【题目】已知点
与
的距离和它到直线
的距离的比是常数
.
求点M的轨迹C的方程;
设N是圆E:
上位于第四象限的一点,过N作圆E的切线
,与曲线C交于A,B两点
求证:
的周长为10.
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了
天.得到的统计数据如下表,
为收费标准(单位:元/日),
为入住天数(单位:),以频率作为各自的“入住率”,收费标准
与“入住率”
的散点图如图
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
![]()
(1)若从以上六家“农家乐”中随机抽取两家深入调查,记
为“入住率”超过
的农家乐的个数,求
的概率分布列;
(2)令
,由散点图判断
与
哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(
结果保留一位小数)
(3)若一年按
天计算,试估计收费标准为多少时,年销售额
最大?(年销售额
入住率
收费标准
)
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是平面内互不平行的三个向量,
,有下列命题:
①方程
不可能有两个不同的实数解;
②方程
有实数解的充要条件是
;
③方程
有唯一的实数解
;
④方程
没有实数解.
其中真命题有 .(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥
的体积为![]()
![]()
(1)求三棱锥
的高;
(2)在线段AB上取一点D,当D在什么位置时,
和
的夹角大小为 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,下列结论中错误的是
A.
, f(
)=0
B. 函数y=f(x)的图像是中心对称图形
C. 若
是f(x)的极小值点,则f(x)在区间(-∞,
)单调递减
D. 若
是f(x)的极值点,则
(
)=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-ax-alnx(a∈R).
(1)若函数f(x)在x=1处取得极值,求a的值;
(2)在(1)的条件下,求证:f(x)≥-
+
-4x+
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
上一点
到焦点的距离为4,动直线
交抛物线
于坐标原点O和点A,交抛物线
的准线于点B,若动点P满足
,动点P的轨迹C的方程为
.
(1)求出抛物线
的标准方程;
(2)求动点P的轨迹方程
;
(3)以下给出曲线C的四个方面的性质,请你选择其中的三个方面进行研究:①对称性;②范围;③渐近线;④
时,写出由
确定的函数
的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为
和
,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.
(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用
、
表示,记
,求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com