精英家教网 > 高中数学 > 题目详情
已知a<0,设p:实数x满足x2-4ax+3a2<0,q:实数x满足x2+2x-8>0,且¬p是¬q的必要不充分条件,求a的取值范围.
分析:分别解一元二次不等式求得p真时,3a<x<a;当q真时,x<-4或x>2.由题意可得 {x|3a<x<a}?{x|x<-4或x>2 },考查集合端点间的大小关系,求得a的取值范围.
解答:解:若p真,则由a<0,x2-4ax+3a2<0,解得3a<x<a.
若q 真,则由x2+2x-8>0,得x<-4或x>2.
∵¬p是¬q的必要不充分条件,它的逆否命题即:q是p的必要不充分条件,
∴由p能推出q,但由q不能推出p.故{x|3a<x<a}?{x|x<-4或x>2 }.
∴3a≥2或a≤-4,再由a<0,可得a≤-4,
故a的取值范围为(-∞,-4].
点评:本题主要考查充分条件、必要条件、充要条件的定义,一元二次不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2-4bx+2.
(1)设集合P={1,2,3},Q={-1,1,2,3,4},从集合P中随机取一个数作为a,从集合Q中随机取一个数作为b,求方程f(x)=0有两相等实根的概率;
(2)设点(a,b)是区域
x+y-8≤0
x>0
y>0
内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,2
3
)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x,y),
(1)求双曲线C1的方程;
(2)求动点M的轨迹C2的方程;
(3)已知x轴上一定点N(1,0),过N点斜率不为0的直线L交C2于A、B两点,x轴上是否存在定点 K(x0,0)使得∠AKN=∠BKN?若存在,求出点K的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
2
x
+6
,其中a为实常数.
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范围;
(2)已知a=
3
4
,P1,P2是函数f(x)图象上两点,若在点P1,P2处的两条切线相互平行,求这两条切线间距离的最大值;
(3)设定义在区间D上的函数y=s(x)在点P(x0,y0)处的切线方程为l:y=t(x),当x≠x0时,若
s(x)-t(x)
x-x0
>0
在D上恒成立,则称点P为函数y=s(x)的“好点”.试问函数g(x)=x2f(x)是否存在“好点”.若存在,请求出所有“好点”坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1.设命题p:函数y=ax是定义在R上的增函数;命题q:关于x的方程x2+ax+1=0有两个不等的负实根.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的两个实根,
(1)设g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求实数b的取值范围;
(3)对于(1)中的函数y=g(a),给定函数h(x)=c(xlnx-x3),(c<0),若对任意的x0∈[2,3],总存在x1∈[1,2],使得g(x0)=h(x1),求实数c的取值范围.

查看答案和解析>>

同步练习册答案