精英家教网 > 高中数学 > 题目详情
在等差数列{an}中7a5+5a9=0,且a9>a5,则使前n项和Sn取最小值的n等于(  )
分析:根据题意先求出数列的公差,再求出通项公式,令an>0,求出n的范围,判断出从第几项开始为正项,即可判断出数列的前n项和Sn最小.
解答:解:设等差数列{an}的公差为d,
∵a9>a5,∴4d>0即d>0
∵7a5+5a9=0,
∴7(a1+4d)+5(a1+8d)=0
∴3a1+17d=0
∴a1<0
∵an=a1+(n-1)d-
17d
3
+(n-1)d
=(n-
20
3
)d
>0
n>
20
3

∵n∈N*
∴a6<0,a7>0
当n=6时和最小
故选B
点评:本题考查了等差数列前n项和Sn的性质,即当首项和公差异号时,前n项和Sn有最大(小)值,对于选择题可以根据an判断出,正项和负项对应的n范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案