【题目】第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为 ,丙猜中国代表团的概率为 ,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.
【答案】解:(Ⅰ)两国代表团获得的金牌数的茎叶图如下
通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值;
俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.
(Ⅱ)由已知得X的可能取值为0,1,2,3,
设事件A、B、C分别表示甲、乙、丙猜中国代表团,
则P(X=0)=P( )P( )P( )=(1﹣ )2(1﹣ )= ,
P(X=1)=
= +(1﹣ )2× = ,
P(X=2)=
=( )2(1﹣ )+C ( )(1﹣ )( )= ,
P(X=3)=P(A)P(B)P(C)=( )2( )= ,
故X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
EX= = .
【解析】(Ⅰ)作出两国代表团获得的金牌数的茎叶图,通过茎叶图可以看出,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散.(Ⅱ)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.
科目:高中数学 来源: 题型:
【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为( )
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=2,AB=1,E是DD1上的一点.
(1)求异面直线AC与B1D所成的角;
(2)若B1D⊥平面ACE,求三棱锥A﹣CDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y=sin(2x+ )的图象,只需将y=cos(2x﹣ )图象上的所有点( )
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|2x﹣a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱柱ABC﹣A1B1C1中,点C在平面A1B1C1内的射影点为的A1B1中点O,AC=BC=AA1 , ∠ACB=90°.
(1)求证:AB⊥平面OCC1;
(2)求二面角A﹣CC1﹣B的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com