精英家教网 > 高中数学 > 题目详情

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h)2

【答案】B
【解析】解:由已知得到几何体为一个圆柱挖去一个圆锥,底面半径为2高为2,设截面的圆半径为r,则 ,得到r=h,所以截面圆的面积为πh2; 故选B.
由题意,首先得到几何体为一个圆柱挖去一个圆锥,得到截面为圆,明确其半径求面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.?x0∈R,sinx0+cosx0=
B.?x≥0且x∈R,2x>x2
C.已知a,b为实数,则a>2,b>2是ab>4的充分条件
D.已知a,b为实数,则a+b=0的充要条件是 =﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1 (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.
(I)求椭圆C的标准方程;
(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC的外接球的球心O满足 =0,则二面角A﹣PB﹣C的正弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=(lnx)ln(1﹣x).
(1)求函数y=f(x)的图象在( ,f( ))处的切线方程;
(2)求函数y=f′(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为(
A.6 斤
B.9 斤
C.9.5斤
D.12 斤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)经过点( ,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为﹣ ,若动点P满足 ,试探究,是否存在两个定点F1 , F2 , 使得|PF1|+|PF2|为定值?若存在,求F1 , F2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第31届夏季奥林匹克运动会将于2016年8月5日﹣21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).

第30届伦敦

第29届北京

第28届雅典

第27届悉尼

第26届亚特兰大

中国

38

51

32

28

16

俄罗斯

24

23

27

32

26

(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为 ,丙猜中国代表团的概率为 ,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.

查看答案和解析>>

同步练习册答案