精英家教网 > 高中数学 > 题目详情

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:

AB=|x1-x2|=

参考以上定理和结论,解答下列问题:

设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.

(1)当△ABC为直角三角形时,求b2-4ac的值;

(2)当△ABC为等边三角形时,求b2-4ac的值.

 

【答案】

(1) 4;(2) 12

【解析】

解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.

∵抛物线与x轴有两个交点,△=b2-4ac>0,则|b2-4ac|=b2-4ac.

∵a>0,∴AB=

又∵CE=||=

∵b2-4ac>0,

∴b2-4ac=4;

(2)当△ABC为等边三角形时,

由(1)可知CE=

∵b2-4ac>0,

∴b2-4ac=12.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市自西向东和自南向北的两条主干道的东南方位有一块空地,市规划部门计划利用它建设一个供市民休闲健身的小型绿化广场,如下图所示是步行小道设计方案示意图,其中,Ox,Oy分别表示自西向东,自南向北的两条主干道.设计方案是自主干道交汇点O处修一条步行小道,小道为抛物线y=x2的一段,在小道上依次以点P1(x1y1),P2(x2y2),…,Pn(xnyn)(n≥10,n∈N*)为圆心,修一系列圆型小道,这些圆型小道与主干道Ox相切,且任意相邻的两圆彼此外切,若x1=1(单位:百米)且xn+1<xn
(1)记以Pn为圆心的圆与主干道Ox切于An点,证明:数列{
1
xn
}
是等差数列,并求|OAn|关于n的表达式;
(2)记⊙Pn的面积为Sn,根据以往施工经验可知,面积为S的圆型小道的施工工时为
πS
(单位:周).试问5周时间内能否完成前n个圆型小道的修建?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一组数据:x1,x2,…,xn(x1<x2<…<xn)的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据的算术平均值为11.   
(1)求出第一个数x1关于n的表达式及第n个数xn关于n的表达式.
(2)若x1,x2,…,xn都是正整数,试求第n个数xn的最大值,并举出满足题目要求且xn取到最大值的一组数据.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)设
a
b
c
是三个非零向量,且
a
b
不共线,若关于x的方程
a
x2+
b
x+
c
=
0
的两个根为x1,x2,则(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一组数据:x1,x2,…,xn(x1<x2<…<xn)的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据的算术平均值为11.   
(1)求出第一个数x1关于n的表达式及第n个数xn关于n的表达式.
(2)若x1,x2,…,xn都是正整数,试求第n个数xn的最大值,并举出满足题目要求且xn取到最大值的一组数据.

查看答案和解析>>

同步练习册答案