(本小题满分12分)![]()
![]()
![]()
如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=
a(0<
≦1).
(Ⅰ)求证:对任意的![]()
(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求
的值。
![]()
(I)见解析(Ⅱ)![]()
(Ⅰ)证法1:如图1,连接BE、BD,由地面ABCD是正方形可得AC⊥BD。
SD⊥平面ABCD,
BD是BE在平面ABCD上的射影,
AC⊥BE
![]()
(Ⅱ)解法1:如图1,由SD⊥平面ABCD知,∠DBE=
,
SD⊥平面ABCD,CD
平面ABCD,
SD⊥CD。
又底面ABCD是正方形,
CD⊥AD,而SD
AD=D,CD⊥平面SAD.
连接AE、CE,过点D在平面SAD内作DE⊥AE于F,连接CF,则CF⊥AE,
故∠CDF是二面角C-AE-D的平面角,即∠CDF=
。
在Rt△BDE中,
BD=2a,DE=![]()
![]()
在Rt△ADE中, ![]()
从而![]()
在
中,
.
由
,得![]()
.
由
,解得
,即为所求.![]()
![]()
![]()
证法2:以D为原点,
的方向分别作为x,y,z轴的正方向建立如
图2所示的空间直角坐标系,则
D(0,0,0),A(
,0,0),B(
,
,0),C(0,
,0),E(0,0
),
![]()
![]()
![]()
,
即
。
解法2:
由(I)得
.
设平面ACE的法向量为n=(x,y,z),则由
得
![]()
。
易知平面ABCD与平面ADE的一个法向量分别为
.
.
0<
,
,
.
由于
,解得
,即为所求。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com