已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|=( ).
A.2∶
B.1∶2
C.1∶
D.1∶3
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于
,则该双曲线的标准方程为( ).
A.
-
=1 B.
-
=1
C.
-
=1 D.
-
=1
查看答案和解析>>
科目:高中数学 来源: 题型:
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2
,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.
(1)求这两曲线方程;
(2)若P为这两曲线的一个交点,求cos∠F1PF2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.
(1)若∠BFD=90°,△ABD的面积为4
,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线y2=2px(p>0)的焦点F与双曲线
-
=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
|AF|,则A点的横坐标为( ).
A.2
B.3 C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
椭圆C:
+
=1(a>b>0)的左、右焦点分别是F1,F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,❶连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.❷设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明
+
为定值,❸并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,点P(0,-1)是椭圆C1:
+
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积取最
大值时直线l1的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com