精英家教网 > 高中数学 > 题目详情

如图,已知△OFQ的面积为S,且·=1.设||=c(c≥2),S=c.若以O为中心,F为一个焦点的椭圆经过点Q,当||取最小值时,求椭圆的方程.

 

 

=1

【解析】以O为原点,所在直线为x轴建立平面直角坐标系.设椭圆方程为=1(a>b>0),Q(x,y).=(c,0),则=(x-c,y).∵||·y=c,∴y=.

又∵·=c(x-c)=1,∴x=c+.则||=(c≥2).

可以证明:当c≥2时,函数t=c+为增函数,

∴当c=2时,||min=,此时Q.将Q的坐标代入椭圆方程,得解得∴椭圆方程为=1.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第十一章第4课时练习卷(解析版) 题型:解答题

在0,1,2,3,…,9这十个自然数中,任取三个不同的数字.将取出的三个数字按从小到大的顺序排列,设ξ为三个数字中相邻自然数的组数(例如:若取出的三个数字为0,1,2,则相邻的组为0,1和1,2,此时ξ的值是2),求随机变量ξ的分布列.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第9课时练习卷(解析版) 题型:解答题

已知Rt△AOB的三个顶点都在抛物线y2=2px上,其中直角顶点O为原点,OA所在直线的方程为y=x,△AOB的面积为6,求该抛物线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

已知双曲线C:=1的焦距为10,P(2,1)在C的渐近线上,则C的方程为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3PF1=4PF2,则△PF1F2的面积等于________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.

(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.

①求证:直线AM与△ABE的外接圆相切;

②求椭圆的标准方程;

(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第7课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.

(1)求椭圆C的标准方程;

(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:解答题

椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连结BC并延长至D,使得CD=BC,求AC与OD的交点P的轨迹方程.

 

 

查看答案和解析>>

同步练习册答案