精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)判断其奇偶性;
(2)指出该函数在区间上的单调性并证明;
(3)利用(1)和(2)的结论,指出该函数在上的增减性.(不用证明)

(1)是奇函数;(2)上是增函数。(3)由于上的奇函数,在上又是增函数,因而该函数在上也是增函数。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义域为的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数是奇函数,且
(1)求的值;
(2)用定义证明在区间上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数,且 
(1)判断的奇偶性,并证明;
(2)判断上的单调性,并用定义证明;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(每小题6分,共12分)求下列函数的定义域:
(1) 
(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数
(1)求函数的定义域;
(2)记函数求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的单调递增函数,且
(1)解不等式
(2)若,对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明函数  是增函数,并求函数的最大值和最小值。

查看答案和解析>>

同步练习册答案