科目:高中数学 来源: 题型:解答题
(本小题满分14分)设函数(),.
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数.
(1)判断其奇偶性;
(2)指出该函数在区间上的单调性并证明;
(3)利用(1)和(2)的结论,指出该函数在上的增减性.(不用证明)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)画出f(x)的图象,并指出f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,角的始边落在轴上,其始边、终边分别与单位圆交于点、(),△为等边三角形.
(1)若点的坐标为,求的值;
(2)设,求函数的解析式和值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com