【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an .
(1)求数列{an},{bn}的通项公式;
(2)令cn=
,求数列{cn}的前n项和Sn;
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.
【答案】
(1)解:设等比数列{an}的公比为q,∵a1=2,a2=4(a3﹣a4),
∴a2=4a2(q﹣q2),化为:4q2﹣4q+1=0,解得q=
.
∴an=
=22﹣n.
∴bn=3﹣2log2an=3﹣2(2﹣n)=2n﹣1
(2)解:cn=
=
=
.
∴数列{cn}的前n项和Sn=
[2+322+5×23+…+(2n﹣1)2n],
∴2Sn=
[22+323+…+(2n﹣3)2n+(2n﹣1)2n+1],
∴﹣Sn=
=
,
可得:Sn= ![]()
(3)解:不等式2λ2﹣kλ+2>a2nbn,即2λ2﹣kλ+2>22﹣2n(2n﹣1),
令dn=22﹣2n(2n﹣1),则dn+1﹣dn=
﹣
=
=
<0,
因此dn+1<dn,即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.
∵对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,
∴2λ2﹣kλ+2>1,∵λ>0.
∴k<2
,∵2
≥2
=2
,当且仅当λ=
时取等号.
∴
.
即k的取值范围是 ![]()
【解析】(1)设等比数列{an}的公比为q,根据a1=2,a2=4(a3﹣a4),可得a2=4a2(q﹣q2),化简解得q.可得an . 利用对数的运算性质可得bn . (2)cn=
=
=
.利用错位相减法与等比数列的求和公式即可得出.(3)不等式2λ2﹣kλ+2>a2nbn , 即2λ2﹣kλ+2>22﹣2n(2n﹣1),令dn=22﹣2n(2n﹣1),通过作差可得:dn+1<dn , 即数列{dn}单调递减,因此n=1时dn取得最大值d1=1.根据对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立,可得2λ2﹣kλ+2>1,根据λ>0.可得k<2
,再利用基本不等式的性质即可得出.
科目:高中数学 来源: 题型:
【题目】某保险公司研究一款畅销保险产品的保费与销量之间的关系,根据历史经验,若每份保单的保费在
元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下
组
与
的对应数据:
![]()
(1)试据此求出
关于
的线性回归方程
;
(2)若把回归方程当做
与
的线性关系,试计算每份保单的保费定为多少元此产品的保费总收入最大,并求出该最大值;
参考公式:
![]()
参考数据:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且
,求
取得最小值时a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB
④
有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;
(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围;
(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),
记h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3+3x2﹣x+1,a∈R.
(1)当a=﹣3时,求证:f(x)=在R上是减函数;
(2)如果对x∈R不等式f′(x)≤4x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数
的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线
上的点
到点
的距离的最小值为
,求
的值;
(2)
如何取值时,函数
存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以下关于向量的命题中,不正确的是( )
A.若向量
,向量
(xy≠0),则 ![]()
B.若四边形ABCD为菱形,则 ![]()
C.点G是△ABC的重心,则 ![]()
D.△ABC中,
和
的夹角等于A
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com