精英家教网 > 高中数学 > 题目详情
P为椭圆
x2
25
+
y2
9
=1
上一点,F1、F2为左右焦点,若∠F1PF2=60°
(1)求△F1PF2的面积;
(2)求P点的坐标.
∵a=5,b=3
∴c=4(1)
设|PF1|=t1,|PF2|=t2
则t1+t2=10①t12+t22-2t1t2•cos60°=82②,
由①2-②得t1t2=12,
SF1PF2=
1
2
t1t2•sin60°=
1
2
×12×
3
2
=3
3

(2)设P(x,y),由SF1PF2=
1
2
•2c•|y|=4•|y|
得4|y|=3
3

|y|=
3
3
4
?y=±
3
3
4
,将y=±
3
3
4
代入椭圆方程解得x=±
5
13
4
,∴P(
5
13
4
3
3
4
)
P(
5
13
4
,-
3
3
4
)
P(-
5
13
4
3
3
4
)
P(-
5
13
4
,-
3
3
4
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆
x2
25
+
y2
9
=1的左、右焦点,P为椭圆上一点,Q是y轴上的一个动点,若|
PF1
|-|
PF2
|=4,则
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①过点P(2,1)的抛物线的标准方程是y2=
1
2
x

②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③焦点在x轴上的双曲线C,若离心率为
5
,则双曲线C的一条渐近线方程为y=2x.
④椭圆
x2
m+1
+
y2
m
=1
的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆
x2
25
+
y2
9
=1
的两个焦点,若点P在椭圆上,且满足PF1=3,Q是y轴上的一个动点,则
PQ
•(
PF1
-
PF2
)
=
-20
-20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知:P为椭圆
x2
25
+
y2
9
=1
上的任意一点,过椭圆的右顶点A和上顶点B分别作与x轴和y 轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN是S1,三角形PDE的面积是S2,则S1:S2=(  )

查看答案和解析>>

同步练习册答案