精英家教网 > 高中数学 > 题目详情
4.设集合U={1,2,3,4,5,6},∁UM={1,2,4};则集合M={3,5,6}.

分析 利用全集和补集的定义,确定集合M元素的构成

解答 解:集合U={1,2,3,4,5,6},∁UM={1,2,4};
则M是把全集U中的元素去掉后,剩余元素构成的集合,
即集合M={3,5,6}.
故答案为:{3,5,6}.

点评 本题考查全集和补集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过圆x2+y2=25上一点P(3,4)的切线方程为(  )
A.3x+4y+25=0B.3x-4y+25=0C.3x+4y-25=0D.3x-4y-25=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点P作圆(x+1)2+(y-2)2=1的切线,切点为M,若|PM|=|PO|(O为原点),则|PM|的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{3\sqrt{5}-5}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(1)求椭圆C的标准方程;
(2)经过椭圆C右焦点的直线l和椭圆C交于A,B两点,点P在椭圆上,且$\overrightarrow{OA}$=$2\overrightarrow{BP}$,其中O为坐标原点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C的参数方程为$\left\{\begin{array}{l}x=3+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}$(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若直线的极坐标方程为sinθ-cosθ=$\frac{1}{ρ}$,求直线被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义:若m-$\frac{1}{2}$<x$≤m+\frac{1}{2}$(m∈Z),则m叫做离实数x最近的整数,记作{x},即m={x},关于函数f(x)=x-{x}的四个命题:①定义域为R,值域为(-$\frac{1}{2}$,$\frac{1}{2}$]; ②点(k,0)是函数f(x)图象的对称中心(k∈Z);③函数f(x)的最小正周期为1; ④函数f(x)在(-$\frac{1}{2}$,$\frac{3}{2}$]上是增函数.上述命题中,真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p=a+$\frac{1}{a-2}\;\;(a>2)$,q=-b2-2b+3(b∈R),则p,q的大小关系为(  )
A.p≥qB.p≤qC.p>qD.p<q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,若关于x方程f(x)=ax有三个不相等的实数根,则实数a的取值范围是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(∁RB);
(2)若集合C={x|x-a>0},且满足A∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案