精英家教网 > 高中数学 > 题目详情
9.定义:若m-$\frac{1}{2}$<x$≤m+\frac{1}{2}$(m∈Z),则m叫做离实数x最近的整数,记作{x},即m={x},关于函数f(x)=x-{x}的四个命题:①定义域为R,值域为(-$\frac{1}{2}$,$\frac{1}{2}$]; ②点(k,0)是函数f(x)图象的对称中心(k∈Z);③函数f(x)的最小正周期为1; ④函数f(x)在(-$\frac{1}{2}$,$\frac{3}{2}$]上是增函数.上述命题中,真命题的序号是①③.

分析 根据让函数解析式有意义的原则确定函数的定义域,然后根据解析式易用分析法求出函数的值域;根据f(2k-x)与f(x)的关系,可以判断函数y=f(x)的图象是否关于点(k,0)(k∈Z)对称;再判断f(x+1)=f(x)是否成立,可以判断③的正误;而由①的结论,易判断函数y=f(x)在 (-$\frac{1}{2}$,$\frac{3}{2}$]上的单调性,但要说明④不成立,我们可以举出一个反例

解答 解:①中,令x=m+a,a∈(-$\frac{1}{2}$,$\frac{1}{2}$]
∴f(x)=x-{x}=a∈(-$\frac{1}{2}$,$\frac{1}{2}$]
所以①正确;
②中,∵f(2k-x)=(2k-x)-{2k-x}=(-x)-{-x}=$\left\{\begin{array}{l}0,m≤x≤m+\frac{1}{2}\\ 1,m-\frac{1}{2}<x<m\end{array}\right.$,
∴点(k,0)(k∈Z)不是y=f(x)的图象的对称中心;故②错;
③中,∵f(x+1)=(x+1)-{x+1}=x-{x}=f(x)
所以周期为1,故③正确;
④中,x=-$\frac{1}{2}$时,m=-1,
f(-$\frac{1}{2}$)=$\frac{1}{2}$
x=$\frac{1}{2}$时,m=0,
f($\frac{1}{2}$)=$\frac{1}{2}$
所以f(-$\frac{1}{2}$)=f($\frac{1}{2}$)
所以④错误.
故答案为:①③.

点评 本题考查的知识点是利用函数的三要素、性质判断命题的真假,我们要根据定义中给出的函数,结合求定义域、值域的方法,及对称性、周期性和单调性的证明方法,对4个结论进行验证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知圆C的方程为x2+y2=9
(1)求过点P(2,-$\sqrt{5}$)的圆的切线方程;
(2)求过点Q(3,5)的圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=2${\;}^{\frac{1}{3}}$,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$-1=0相切.
(1)求椭圆C的标准方程;
(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设集合U={1,2,3,4,5,6},∁UM={1,2,4};则集合M={3,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(2-x)\;,\;\;\;x<2\\{x^{\frac{1}{3}}}\;\;\;\;\;\;\;\;\;\;\;\;\;,\;\;\;x≥2\end{array}$,则不等式f(x)<2的解集为(  )
A.{x|2<x<8}B.{x|-2≤x<2}C.{x|-2<x<8}D.{x|x<8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列前n项和为Sn,有人算得S1=27,S2=63,S3=109,S4=175,后来发现有一个数算错了,错误的是(  )
A.S1B.S2C.S3D.S4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的奇函数,且满足f(x+4)=f(x),当x∈(2,4)时,f(x)=|x-3|,则f(1)+f(2)+f(3)+f(4)=(  )
A.1B.0C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=2x+3,函数g(x)=${x^{\frac{1}{3}}}$,f(g(27))的值是9.

查看答案和解析>>

同步练习册答案