精英家教网 > 高中数学 > 题目详情
8.正数x,y满足$\frac{1}{x}$+$\frac{9}{y}$=1.
(1)求xy的最小值;
(2)求x+2y的最小值.

分析 (1)直接利用基本不等式的性质求解.
(2)利用“乘1法”与基本不等式的性质即可得出.

解答 解:(1)∵x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,
那么:1=$\frac{1}{x}$+$\frac{9}{y}$≥2$\sqrt{\frac{1}{x}•\frac{9}{y}}$=$\frac{6}{\sqrt{xy}}$,当且仅当9x=y,即x=2,y=18时取等号.
即:$\sqrt{xy}≥6$,
所以:xy的最小值36.
(2))∵x>0,y>0,$\frac{1}{x}$+$\frac{9}{y}$=1,
那么:x+2y=(x+2y)($\frac{1}{x}$+$\frac{9}{y}$)=$1+\frac{2y}{x}+\frac{9x}{y}+18$$≥19+2\sqrt{\frac{2y}{x}\frac{9x}{y}}=19+6\sqrt{2}$,当且仅当3x=$\sqrt{2}$y,即x=$\sqrt{6}+6\sqrt{2}$,y=$\frac{3\sqrt{3}+18}{2}$时取等号.
所以:x+2y的最小值为$19+6\sqrt{2}$.

点评 本题考查了基本不等式的性质的运用能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.实数a取什么值时,复数z=a2-1+(a+1)i.是
(I)实数;
(Ⅱ)虚数;
(Ⅲ)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(1)求随机抽取的市民中年龄段在[30,40)的人数;
(2)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$f(x)=\sqrt{3}{cos^2}kx-sinkxcoskx(k>0)$的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列,则k=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sinx+excosx的导数为(  )
A.y′=(1+ex)cosx+exsinxB.y′=cosx+exsinx
C.y′=(1+ex)cosx-exsinxD.y′=cosx-exsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某公司安排6位员工在“五一劳动节(5月1日至5月3日)”假期值班,每天安排2人,每人值班1天,若6位员工中甲不在1日值班,乙不在3日值班,则不同的安排方法种数为(  )
A.30B.36C.42D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2cos(x-$\frac{π}{3}$)的单调递增区间是(  )
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA上的点,且EE=2,EH=1,四边形EFGH为平行四边形.
(Ⅰ)求证:EH∥BD;
(Ⅱ)连结AC,若AC⊥BD,求FH的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.假设200件产品中有3件次品,现在从中任取5件,至少有2件次品的抽法数有(  )
A.C${\;}_{3}^{2}$C${\;}_{198}^{3}$B.C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$
C.C${\;}_{200}^{5}$-C${\;}_{197}^{4}$D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$

查看答案和解析>>

同步练习册答案