精英家教网 > 高中数学 > 题目详情

【题目】定义域为{x|x∈N* , 1≤x≤12}的函数f(x)满足|f(x+1)﹣f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为

【答案】176
【解析】解:根据题意,若|f(x+1)﹣f(x)|=1,则f(x+1)﹣f(x)=1和f(x+1)﹣f(x)=﹣1中, 必须且只能有1个成立,
若f(1)=1,f(12)=4,且f(1),f(4),f(12)成等比数列,
则f(4)=±2,
分2种情况讨论:
①、若f(4)=﹣2,
在1≤x≤3中,f(x+1)﹣f(x)=﹣1都成立,
在4≤x≤11中,有1个f(x+1)﹣f(x)=﹣1,7个f(x+1)﹣f(x)=1成立,
则有C81=8种情况,即有8个不同函数;
②、若f(4)=2,
在1≤x≤3中,有1个f(x+1)﹣f(x)=﹣1成立,2个f(x+1)﹣f(x)=1成立,有C31=3种情况,
在4≤x≤11中,有3个f(x+1)﹣f(x)=﹣1,5个f(x+1)﹣f(x)=1成立,有C83=56种情况,
则有3×56=168种情况,即有168个不同函数;
则一共有8+168=176个满足条件的不同函数;
所以答案是:176.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题“x∈R,x2+1<2x”的否定是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线方程为Ax+By+C=0(A·B≠0)试编写一个程序要求输入符合条件的ABC的值输出该直线在x轴、y轴上的截距和直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:
①若mα,nβ,α⊥β,则m⊥n;
②若m⊥α,n∥β且α∥β,则m⊥n;
③若α∥β,lα,则l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:
①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a⊥c;
③若a∥γ,b∥γ,则a∥b; ④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是(
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列程序:

INPUT“实数”;x1,y1,x2,y2

a=x1-x2

m=a2

b=y1-y2

n=b2

s=m+n

d=SQR(s)

PRINT d

END

此程序的功能为 (  )

A. 求点到直线的距离

B. 求两点之间的距离

C. 求一个多项式函数的值

D. 求输入的值的平方和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(文)某质点的位移函数是s(t)=2t3 , 则当t=2s时,它的瞬时速度是m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题“x∈R,若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=(
A.5﹣4i
B.5+4i
C.3﹣4i
D.3+4i

查看答案和解析>>

同步练习册答案