精英家教网 > 高中数学 > 题目详情
若直线y=x+b与曲线x=
2-y2
恰有一个公共点,则实数b的取值范围是
-
2
<b≤
2
或b=-2
-
2
<b≤
2
或b=-2
分析:把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且仅有一个交点,那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切,交曲线于(0,-
2
)和另一个点,及与曲线交于点(0,
2
),分别求出b,则b的范围可得.
解答:解:x=
2-y2
,化简得x2+y2=2,
注意到x≥0,所以这个曲线应该是半径为
2
,圆心是(0,0)的半圆,且其图象只在一、四象限.
画出图象,这样因为直线与其只有一个交点,
从图上看出其三个极端情况分别是:
直线在第四象限与曲线相切,
交曲线于(0,-
2
)和另一个点,
及与曲线交于点(0,
2
).
分别算出三个情况的b值是:-2,-
2
2

因为b就是直线在y轴上的截距了,
所以看图很容易得到b的范围是:-
2
<b≤
2
或b=-2.
故答案为::-
2
<b≤
2
或b=-2.
点评:本题主要考查了直线与圆相交的性质.对于此类问题除了用联立方程转化为方程的根的问题之外,也可用数形结合的方法较为直观.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为常数,若曲线段y=ax2+3x(x∈(0,4))存在与直线x+y-1=0垂直的切线,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

如图所示,直线l1l2相交于点M,且l1l2,点Nl1.以AB为端点的曲线段C上的任意一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6,分别以l1l2为x轴和y轴,建立如图坐标系,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.

    (1)求双曲线C的方程;

    (2)若Q是双曲线线C上的任一点,F1F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;

    (3)设直线y = mx + 1与双曲线C的左支交于AB两点,另一直线l经过M (–2,0)及AB的中点,求直线ly轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a为常数,若曲线段y=ax2+3x(x∈(0,4))存在与直线x+y-1=0垂直的切线,则实数a的取值范围是(  )
A.[-
1
2
,+∞]
B.(-∞,-
1
2
C.[-
1
4
,+∞]
D.(-∞,-
1
4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田二中高二(上)期末数学试卷(文科)(解析版) 题型:选择题

已知a为常数,若曲线段y=ax2+3x(x∈(0,4))存在与直线x+y-1=0垂直的切线,则实数a的取值范围是( )
A.[-,+∞]
B.(-∞,-
C.[-,+∞]
D.(-∞,-

查看答案和解析>>

同步练习册答案