精英家教网 > 高中数学 > 题目详情

在△ABC中,若cosA•cosB•cosC>0,则这个三角形是


  1. A.
    直角三角形
  2. B.
    锐角三角形
  3. C.
    钝角三角形
  4. D.
    直角或锐角三角形
B
分析:根据cosA•cosB•cosC>0,可知cosA,cosB,cosC 三者中,同为正,或两负一正,由于A,B,C为三角形中的角,可得cosA,cosB,cosC 三者中,同为正,从而得解.
解答:由题意,∵cosA•cosB•cosC>0
∴cosA,cosB,cosC 三者中,同为正,或两负一正
由于A,B,C为三角形中的角
∴cosA,cosB,cosC 三者中,同为正
∴A,B,C为锐角
故选B.
点评:本题以三角形为载体,考查三角函数,考查三角形形状的判断,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是
-8
-8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足数学公式,则数学公式的最小值是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足
PA
=sin2
θ
2
OA
+cos2
θ
2
CA
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是______.

查看答案和解析>>

科目:高中数学 来源:2013年吉林省实验中学高考数学二模试卷(文科)(解析版) 题型:填空题

在△ABC中,AB边上的中线CO=4,若动点P满足,则的最小值是   

查看答案和解析>>

同步练习册答案