精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,x>1或x<-1.
(1)计算f($\frac{9}{7}$)的值;
(2)判断f(x)的奇偶性并说明理由.

分析 (1)由已知中的函数解析式,将x=$\frac{9}{7}$代入,结合对数的运算性质,可得答案;
(2)根据奇函数的定义,结合已知中函数的解析式,结合对数的运算性质,可证得结论.

解答 解:(1)∵函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,
∴f($\frac{9}{7}$)=log${\;}_{\frac{1}{4}}$ $\frac{\frac{9}{7}+1}{\frac{9}{7}-1}$=log${\;}_{\frac{1}{4}}$8=${log}_{{(2}^{-2})}({2}^{3})$=-$\frac{3}{2}$,
(2)函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,x>1或x<-1为奇函数,理由如下:
由函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,x>1或x<-1的定义域关于原点对称,
且f(-x)=log${\;}_{\frac{1}{4}}$ $\frac{-x+1}{-x-1}$=log${\;}_{\frac{1}{4}}$ $\frac{x-1}{x+1}$=log${\;}_{\frac{1}{4}}$ ($\frac{x+1}{x-1}$)-1=-log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$=-f(x),
故函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,x>1或x<-1为奇函数.

点评 本题考查的知识点是函数的奇偶性,函数求值,对数的运算性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.(1)求函数f(x)=3•4x-2x在[0,+∞)上的值域.
(2)求函数f(x)=sinx+cos2x在R上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知R为全集,A={x|$\frac{x+1}{3-x}$≥0},B={x|x2≤5x-6},
(1)求A,B,A∩B,A∪B;
(2)求(∁RA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的首项为a1=1,且满足对任意的n∈N*,都有an+1-an=2“成立,则a10=19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=log2(x-3),
(1)求f(51)-f(6)的值;
(2)若f(x)≤0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log22x+2alog2$\frac{1}{x}$+b,若x=$\frac{1}{2}$时,函数f(x)有最小值-4.
(1)求a-b的值;
(2)在题(1)的条件下,求不等式f(x)>0的解集A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=x2+1,g(x)是一次函数,若f(g(x))=9x2+6x+2则g(x)的解析式为g(x)=3x+1或g(x)=-3x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的定义域:
(1)y=logx+1(16-4x
(2)y=$\frac{\sqrt{{x}^{2}-4}}{lg{(x}^{2}+2x-3)}$;
(3)y=$\sqrt{1-lo{g}_{a}(x-a)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的定义域与值域.
(1)y=2${\;}^{\frac{1}{x-4}}$;
(2)y=${(\frac{2}{3})}^{-|\begin{array}{l}{x}\end{array}|}$;
(3)y=4x+2x+1+1.

查看答案和解析>>

同步练习册答案