分析 (1)利用配方法,结合x=$\frac{1}{2}$时,f(x)有最小值-4,建立方程,即可求a与b的值;
(2)f(x)>0即(log2x)2+2log2x-3>0,即可求出x的集合A.
解答 解:(1)f(x)=(log2x)2-2alog2x+b
=(log2x)2-2alog2x+b=(log2x-a)2+b-a2,
∵x=$\frac{1}{2}$时,f(x)有最小值-4,
∴log2$\frac{1}{2}$=a,b-a2=-4,
∴a=-1,b=-3;
(2)f(x)=(log2x)2+2log2x-3>0,
∴log2x<-3或log2x>1,
∴0<x<$\frac{1}{8}$或x>2,
∴A={x|0<x<$\frac{1}{8}$或x>2}.
点评 本题考查函数的最值,考查学生解不等式的能力,确定函数的解析式是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=1,y=$\frac{x}{x}$ | B. | y=$\sqrt{x-1}$×$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$ | ||
| C. | y=|x|,y=($\sqrt{x}$)2 | D. | y=x,y=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com