精英家教网 > 高中数学 > 题目详情
9.求下列函数的定义域与值域.
(1)y=2${\;}^{\frac{1}{x-4}}$;
(2)y=${(\frac{2}{3})}^{-|\begin{array}{l}{x}\end{array}|}$;
(3)y=4x+2x+1+1.

分析 (1)容易看出x≠4,从而定义域为{x|x≠4},而由$\frac{1}{x-4}≠0$可得到${2}^{\frac{1}{x-4}}≠1$,这样即可得出该函数的值域;
(2)定义域为R,由-|x|≤0,根据指数函数$y=(\frac{2}{3})^{x}$的单调性即可得出该函数的值域;
(3)定义域显然为R,配方得到y=(2x+1)2,从而根据2x>0即可得出y的范围,即得出该函数的值域.

解答 解:(1)定义域为{x|x≠4};
$\frac{1}{x-4}≠0$;
∴${2}^{\frac{1}{x-4}}≠1$,且${2}^{\frac{1}{x-4}}>0$;
∴该函数的值域为{y|y>0,且y≠1};
(2)定义域为R;
-|x|≤0;
∴$(\frac{2}{3})^{-|x|}≥1$;
∴该函数的值域为[1,+∞);
(3)定义域为R;
y=(2x+1)2
∵2x>0;
∴2x+1>1;
∴y>1;
∴该函数的值域为(1,+∞).

点评 考查函数定义域、值域的概念及其求法,指数函数的值域,以及指数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log${\;}_{\frac{1}{4}}$ $\frac{x+1}{x-1}$,x>1或x<-1.
(1)计算f($\frac{9}{7}$)的值;
(2)判断f(x)的奇偶性并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司计划明年生产一种新型环保电视不少于1万台,下面是公司各部门提供的数据信息.
人事部:明年生产工人多于80人,每人每年工作时间按2400小时计算;
营销部:生产一台电视机,平均用12个工时,每台电视机需安装5个某种主要部件;
供应部:今年年终将库存主要部件2000个,明年能采购到这种主要部件为80000个.
根据上述信息,明年公司的生产量可能是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项均为正数的数列{an}满足(an+1+an)(2an-an+1)=0,a2+a4=2a3+4,其中n∈N*
(1)求数列{an}的通项公式.
(2)设数列{bn}满足bn=$\frac{n{a}_{n}}{(2n+1)•{2}^{n}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(3)令cn=$\frac{(n+1)^{2}+1}{n(n+1){a}_{n+2}}$,记数列{cn}的前n项和为Sn,其中n∈N*,证明:$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等腰直角三角形ABC中,斜边BC长为4$\sqrt{2}$,一个椭圆以C为其中一个焦点,另一焦点在线段AB上,且椭圆经过A,B两点,求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)是否有闭区间上连续函数,使得每个函数值恰好取一次?
(2)是否有闭区间上连续函数,使得每个函数恰好取二次?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=x2+(2a-1)x+4,若x1<x2,x1+x2=2a时,有f(x1)>f(x2),则实数a的取值范围是(  )
A.a$>\frac{1}{4}$B.a$≥\frac{1}{4}$C.a$<\frac{1}{4}$D.a$≤\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{$\frac{{a}_{n}}{{2}^{n}}$}是公差为1的等差数列,且a1+$\frac{2}{5}$,a2,a3成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{4}^{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的一元二次方程x2-2x+m2=0.
(1)求出该方程有实数根的充要条件;
(2)写出该方程有实数根的一个充分不必要条件;
(3)写出该方程有实数根的一个必要不充分条件.

查看答案和解析>>

同步练习册答案