精英家教网 > 高中数学 > 题目详情

如图,ABCD是边长为2a的正方形,M,N分别是AB,AD的中点,CP⊥平面ABCD,PC= a.(1)求证:BD∥平面PMN;(2)求点B到平面PMN的距离.

答案:
解析:

  解 (1)∵M,N分别是正方形ABCD的边AB,AD的中点,∴BD∥MN,MN平面PMN.∴BD∥平面PMN.

  (2)∵ABCD是正方形,∴BD⊥AC,MN∥BD,∴MN⊥AC,又PC⊥平面ABCD,∴MN⊥PC,于是MN⊥平面PCE(E是MN与AC的交点).作OH⊥PE于H(O是AC,BD的交点),则OH⊥MN.∴OH⊥平面PMN.由BD∥平面PMN可知,OH的长等于点B到平面PMN的距离,在Rt△PCE中,PC= a,EC=a.∴PE=a,EO=a,由△EHO∽△ECP得,OH=a.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,ABCD是边长为a的菱形,且∠BAD=60°,△PAD为正三角形,且面PAD⊥面ABCD.
(1)求cos<
AB
PD
>的值;
(2)若E为AB的中点,F为PD的中点,求|
EF
|的值;
(3)求二面角P-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形,面EAD⊥面ABCD,且EA=ED,EF∥AB,且EF=1,O是线段AD的中点,三棱锥F-OBC的体积为
23

(1)求证:OF⊥面FBC;
(2)求二面角B-OF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁城县模拟)如图,ABCD是边长为1的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求点F到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):
(Ⅰ).求点M的轨迹方程;
(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.

查看答案和解析>>

同步练习册答案