精英家教网 > 高中数学 > 题目详情
10.利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.

分析 令f(x)=x5+x3+x2-1,先用导数法判断出函数在[0,2]上为增函数,再由秦九韶算法结合函数零点存在定理,可得结论.

解答 解:令f(x)=x5+x3+x2-1,
则当x∈[0,2]时,f′(x)=5x4+3x2+2x≥0恒成立,
又由f(0)=-1<0,
利用秦九韶算法可得:f(x)=x5+x3+x2-1=((((x+0)x+1)x+1)x+0)x-1,
当x=2时,
v0=1,
v1=2,
v2=5,
v3=11,
v4=22,
v5=43,
即f(2)<0,
故函数f(x)=x5+x3+x2-1在[0,2]上有且只有一个零点,
即x5+x3+x2-1=0在[0,2]上有且只有一个实根.

点评 本题考查的知识点是函数的单调性,函数的零点存在判定定理,秦九韶算法,是函数与算法的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=2${\;}^{-{x}^{2}+ax-1}$在区间(-∞,3)内递增.则实数α的取值范围是a≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|$lo{g}_{\frac{1}{2}}$x|.
(1)求函数f(x)的定义域;
(2)若函数f(x)>0,求x的取值范围;
(3)指出函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,则k=-1,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x2+2x
(1)求f(2)+g(2)的值;
(2)求f(x)+g(x)的解析式;
(3)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一质点做匀变速直线运动,第1秒内通过2米,第3秒内通过6米,试求:
(1)质点运动的加速度.
(2)在第6秒内的平均速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列的极限:
(1)$\underset{lim}{n→∞}$$\frac{4{n}^{2}-5n-1}{7+2n-8{n}^{2}}$;
(2)$\underset{lim}{n→∞}$$\frac{1+2+3+…+(n-1)}{{n}^{2}}$;
(3)$\underset{lim}{n→∞}$($\frac{1}{1•2}$+$\frac{1}{2•3}$+…+$\frac{1}{n(n+1)}$);
(4)$\underset{lim}{n→∞}$($\sqrt{{n}^{2}+n}$-n);
(5)$\underset{lim}{n→∞}$($\root{n}{2}$+$\root{n}{4}$+…+$\root{n}{18}$);
(6)$\underset{lim}{n→∞}$(1+$\frac{1}{n}$)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PC切圆O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.
(1)求证:PA•PB=PE•PO;
(2)若PC=4,CE=$\frac{12}{5}$,求圆O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$x2+(a-1)ln(x-a)-$\frac{1}{2}$,其中a∈R,a≠1且为常数.
(1)当a=0时,求函数f(x)的极值;
(2)求函数f(x)的单调区间;
(3)若函数f(x)在区间[a+1,1]上有零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案