精英家教网 > 高中数学 > 题目详情
5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x2+2x
(1)求f(2)+g(2)的值;
(2)求f(x)+g(x)的解析式;
(3)求f(x)的解析式.

分析 (1)以-x代替x,代入计算,可得f(x)+g(x)的解析式,即可求解;
(2)由(1)得f(x)+g(x)的解析式.
(3)与条件组成方程组,即可求f(x)的解析式.

解答 解:(1)∵f(x)-g(x)=x2+2x,
∴f(-x)-g(-x)=x2-2x
∵f(x),g(x)分别是定义在R上的偶函数和奇函数,
∴f(x)+g(x)=x2-2x,
∴f(2)+g(2)=0;
(2)由(1)得f(x)+g(x)=x2-2x;
(3)由f(x)+g(x)=x2-2x,f(x)-g(x)=x2+2x
可得f(x)=x2

点评 本题考查函数的解析式,考查代入法,考查函数的奇偶性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],求直线PA1斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且a2,2$\sqrt{3}$,b2成等比数列.
(1)求C的方程;
(2)设C上一点P的横坐标为1,F1,F2为C的左,右焦点,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,若g(x)=ax3-2bx2在区间[t,t+1]上单调递增,则实数t的取值范围是(  )
A.(-2,-1)B.[-2,-1]C.[-2,0]D.[-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=t2+2+2tx(t≠0).则$\frac{f(cosθ)}{f(sinθ)}$的范围[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P($\frac{3}{2}$,$\frac{\sqrt{7}}{4}$),抛物线E的顶点坐标原点,焦点F(0,b)
(1)求椭圆C及抛物线E的方程.
(2)点Q在椭圆C上,过点Q向抛物线E引两条切线l1,l2.试判断是否存在这样的点Q,使得l1⊥l2.若存在,求出点Q坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}{x=a+2t}\\{y=a+4t}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ为常数).
(1)求直线l和圆C的一般方程;
(2)若直线l与圆C有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:3x+2y-5=0,求l1关于直线l:2x+5y+4=0对称的直线l2的方程.

查看答案和解析>>

同步练习册答案