精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,若g(x)=ax3-2bx2在区间[t,t+1]上单调递增,则实数t的取值范围是(  )
A.(-2,-1)B.[-2,-1]C.[-2,0]D.[-3,-1]

分析 由于f′(x)=3x2+2ax+b,依题意知,f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,于是有b=-3-2a,代入f(1)=10即可求得a,b,先求出函数的单调区间,结合函数f(x)在区间[t,t+1]上单调递增,得到不等式组,解出即可.

解答 解:∵f(x)=x3+ax2+bx-a2-7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,
∴a2+8a+12=0,
∴a=-2,b=1或a=-6,b=9.
当a=-2,b=1时,f′(x)=3x2-4x+1=(3x-1)(x-1),
当$\frac{1}{3}$<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值,与题意不符;
当a=-6,b=9时,f′(x)=3x2-12x+9=3(x-1)(x-3)
当x<1时,f′(x)>0,当<x<3时,f′(x)<0,
∴f(x)在x=1处取得极大值,符合题意;
∴g(x)=-6x3-18x2在[t,t+1]上单调递增,
∴g′(x)=-18x2-36x>0,即x(x+2)<0,即-2<x<0在[t,t+1]上恒成立,
∴$\left\{\begin{array}{l}{t>-2}\\{t+1<0}\end{array}\right.$,解得-2<t<-1,
故t的取值范围为(-2,-1),
故选:A.

点评 本题考查函数在某点取得极值的条件,求得f′(x)=3x2+2ax+b,利用f′(1)=0,f(1)=10求得a,b是关键,考查分析、推理与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知长方体ABCD-A1B1C1D1中,AB=AD=4,AA1=8,求异面直线A1B与C1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2-4x-77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{21}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|$lo{g}_{\frac{1}{2}}$x|.
(1)求函数f(x)的定义域;
(2)若函数f(x)>0,求x的取值范围;
(3)指出函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点P在双曲线上,若$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,且|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2ac,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,则k=-1,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x2+2x
(1)求f(2)+g(2)的值;
(2)求f(x)+g(x)的解析式;
(3)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列的极限:
(1)$\underset{lim}{n→∞}$$\frac{4{n}^{2}-5n-1}{7+2n-8{n}^{2}}$;
(2)$\underset{lim}{n→∞}$$\frac{1+2+3+…+(n-1)}{{n}^{2}}$;
(3)$\underset{lim}{n→∞}$($\frac{1}{1•2}$+$\frac{1}{2•3}$+…+$\frac{1}{n(n+1)}$);
(4)$\underset{lim}{n→∞}$($\sqrt{{n}^{2}+n}$-n);
(5)$\underset{lim}{n→∞}$($\root{n}{2}$+$\root{n}{4}$+…+$\root{n}{18}$);
(6)$\underset{lim}{n→∞}$(1+$\frac{1}{n}$)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(-2ax+a+1)ex(a为常数)
(1)若a≥0,试论函数f(x)的单调性;
(2)若0≤a≤1,求函数f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案