精英家教网 > 高中数学 > 题目详情
8.设F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,点P在双曲线上,若$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,且|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2ac,则此双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

分析 不妨设P在双曲线的右支上,设|$\overrightarrow{P{F}_{1}}$|=t,则由双曲线的定义可得|$\overrightarrow{P{F}_{2}}$|=t-2a,运用勾股定理和离心率公式,计算即可得到所求.

解答 解:不妨设P在双曲线的右支上,
设|$\overrightarrow{P{F}_{1}}$|=t,则由双曲线的定义可得|$\overrightarrow{P{F}_{2}}$|=t-2a,
由题意可得t(t-2a)=2ac,
又$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,
由勾股定理可得,
t2+(t-2a)2=4c2
则[t-(t-2a)]2=4c2-4ac,
即为c2-ac-a2=0,
由e=$\frac{c}{a}$,可得
e2-e-1=0,
解得e=$\frac{1+\sqrt{5}}{2}$($\frac{1-\sqrt{5}}{2}$舍去),
故答案为:$\frac{1+\sqrt{5}}{2}$.

点评 本题考查双曲线的定义、方程和性质,主要考查双曲线的离心率的求法,注意运用定义和化简整理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民:

(1)分别估计该市的市民对甲、乙部门评分的中位数;
(2)分别估计该市的市民对甲、乙部门的评分高于90的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an},a1=1,an+1=$\frac{{a}_{n}}{1+2{a}_{n}}$(n=1,2,3,…).
(1)求a2、a3、a4
(2)归纳猜想通项公式an,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且a2,2$\sqrt{3}$,b2成等比数列.
(1)求C的方程;
(2)设C上一点P的横坐标为1,F1,F2为C的左,右焦点,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过双曲线16x2-9y2=144的-个焦点作-条渐近线的平行线,与双曲线交于一点P.点P与双曲线的两个顶点所构成的三角形的面积为$\frac{32}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,若g(x)=ax3-2bx2在区间[t,t+1]上单调递增,则实数t的取值范围是(  )
A.(-2,-1)B.[-2,-1]C.[-2,0]D.[-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=t2+2+2tx(t≠0).则$\frac{f(cosθ)}{f(sinθ)}$的范围[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点P($\frac{3}{2}$,$\frac{\sqrt{7}}{4}$),抛物线E的顶点坐标原点,焦点F(0,b)
(1)求椭圆C及抛物线E的方程.
(2)点Q在椭圆C上,过点Q向抛物线E引两条切线l1,l2.试判断是否存在这样的点Q,使得l1⊥l2.若存在,求出点Q坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线Γ:y2=2px(p>0)的准线过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点,抛物线与椭圆的一个交点P到椭圆两焦点的距离之和为4,直线l1:y=x+$\frac{{b}^{2}}{3}$与抛物线仅有一个交点.
(1)求抛物线Γ的方程以及椭圆E的方程;
(2)已知过原点O且斜率为k(k>0)的直线l2与抛物线Γ交于O、A两不同点,与椭圆交于B、C两不同点,其中B、C两点的纵坐标分别满足yB<0,yC>0,若$\overrightarrow{BO}$=$\overrightarrow{CA}$,求直线l2的方程.

查看答案和解析>>

同步练习册答案