1£®ÒÑÖªÅ×ÎïÏߦ££ºy2=2px£¨p£¾0£©µÄ×¼Ïß¹ýÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µã£¬Å×ÎïÏßÓëÍÖÔ²µÄÒ»¸ö½»µãPµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬Ö±Ïßl1£ºy=x+$\frac{{b}^{2}}{3}$ÓëÅ×ÎïÏß½öÓÐÒ»¸ö½»µã£®
£¨1£©ÇóÅ×ÎïÏߦ£µÄ·½³ÌÒÔ¼°ÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÒÑÖª¹ýÔ­µãOÇÒбÂÊΪk£¨k£¾0£©µÄÖ±Ïßl2ÓëÅ×ÎïÏߦ£½»ÓÚO¡¢AÁ½²»Í¬µã£¬ÓëÍÖÔ²½»ÓÚB¡¢CÁ½²»Í¬µã£¬ÆäÖÐB¡¢CÁ½µãµÄ×Ý×ø±ê·Ö±ðÂú×ãyB£¼0£¬yC£¾0£¬Èô$\overrightarrow{BO}$=$\overrightarrow{CA}$£¬ÇóÖ±Ïßl2µÄ·½³Ì£®

·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬ÓÉÌâÒâ¿ÉµÃp=2c£¬ÔÙÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃa=2£¬ÁªÁ¢Ö±ÏߺÍÅ×ÎïÏß·½³Ì£¬ÔËÓÃÅбðʽΪ0£¬¿ÉµÃp£¬bµÄ·½³Ì£¬½â·½³Ì×飬¿ÉµÃa=2£¬p=2£¬b=$\sqrt{3}$£¬c=1£¬½ø¶øµÃµ½Å×ÎïÏߺÍÍÖÔ²·½³Ì£»
£¨2£©Éè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏߺÍÍÖÔ²·½³Ì£¬ÇóµÃ½»µãµÄ×ø±ê£¬ÔÙÓÉÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬½â·½³Ì¿ÉµÃk£¬½ø¶øµÃµ½ËùÇóÖ±Ïß·½³Ì£®

½â´ð ½â£º£¨1£©y2=2px£¨p£¾0£©µÄ×¼ÏßΪx=-$\frac{p}{2}$£¬
ÓÉÌâÒâ¿ÉµÃ-$\frac{p}{2}$=-c£¬¢Ù
½»µãPµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬¼´Îª2a=4£¬
b2+c2=4£¬¢Ú
y=x+$\frac{{b}^{2}}{3}$ÓëÅ×ÎïÏßy2=2pxÁªÁ¢£¬¿ÉµÃ$\frac{1}{2p}$y2-y+$\frac{{b}^{2}}{3}$=0£¬
¼´ÓÐÅбðʽ1-$\frac{2{b}^{2}}{3p}$=0£¬¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃp=2£¬b=$\sqrt{3}$£¬c=1£¬a=2£®
ÔòÅ×ÎïÏߦ£µÄ·½³ÌΪy2=4x£¬ÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÁªÁ¢Ö±Ïßl2£ºy=kxºÍÅ×ÎïÏß·½³Ìy2=4x£¬¿ÉµÃA£¨$\frac{4}{{k}^{2}}$£¬$\frac{4}{k}$£©£¬
ÁªÁ¢Ö±Ïßl2£ºy=kxºÍÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
¿ÉµÃB£¨-$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬-k•$\sqrt{\frac{12}{3+4{k}^{2}}}$£©£¬C£¨$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬k•$\sqrt{\frac{12}{3+4{k}^{2}}}$£©£¬
ÓÉ$\overrightarrow{BO}$=$\overrightarrow{CA}$£¬¿ÉµÃ$\sqrt{\frac{12}{3+4{k}^{2}}}$=$\frac{4}{{k}^{2}}$-$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬
½âµÃk=$\frac{\sqrt{6+3\sqrt{13}}}{3}$£¬
¼´ÓÐÖ±Ïßl2µÄ·½³ÌΪy=$\frac{\sqrt{6+3\sqrt{13}}}{3}$x£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÅ×ÎïÏߵ͍Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²¡¢Å×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèF1£¬F2ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¸ö½¹µã£¬µãPÔÚË«ÇúÏßÉÏ£¬Èô$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0£¬ÇÒ|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2ac£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ$\frac{1+\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßC£ºy=4ax3+x£¬¹ýµãQ£¨0£¬-1£©×÷CµÄÇÐÏßl£¬ÇеãΪP£®
£¨1£©ÇóÖ¤£º²»ÂÛaÔõÑù±ä»¯£®µãP×Ü-ÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
£¨2£©Èôa£¾0£¬¹ýµãPÇÒÓë1´¹Ö±µÄÖ±ÏßÓëxÖá½»ÓÚµãT£¬ÇóOTµÄ×îСֵ£¨0Îª×ø±êÔ­µã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F·Ö±ðΪAB¡¢ADµÄÖе㣬ÔòEFÓëB1CËù³ÉµÄ½ÇµÈÓÚ£¨¡¡¡¡£©
A£®45¡ãB£®30¡ãC£®90¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®µ¥Î»Õý·½ÌåABCD-A1B1C1OÔÚ¿Õ¼äÖ±½Ç×ø±êϵÖеÄλÖÃÈçͼËùʾ£¬¶¯µãM£¨a£¬a£¬0£©£¬N£¨0£¬b£¬1£©£¬ÆäÖÐ0¡Üa¡Ü1£¬0¡Üb¡Ü1£®ÉèÓÉM£¬N£¬OÈýµãÈ·¶¨µÄÆ½Ãæ½Ø¸ÃÕý·½ÌåµÄ½ØÃæÎªE£¬ÄÇô£¨¡¡¡¡£©
A£®¶ÔÈÎÒâµãM£¬´æÔÚµãNʹ½ØÃæEΪÈý½ÇÐÎ
B£®¶ÔÈÎÒâµãM£¬´æÔÚµãNʹ½ØÃæEΪÕý·½ÐÎ
C£®¶ÔÈÎÒâµãMºÍN£¬½ØÃæE¶¼ÊÇÌÝÐÎ
D£®¶ÔÈÎÒâµãN£¬´æÔÚµãMʹµÃ½ØÃæEΪ¾ØÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=£¨-2ax+a+1£©ex£¨aΪ³£Êý£©
£¨1£©Èôa¡Ý0£¬ÊÔÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èô0¡Üa¡Ü1£¬Çóº¯Êýf£¨x£©ÔÚ[0£¬1]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨x+$\frac{¦Ð}{2}$£©•sin£¨x+$\frac{7¦Ð}{3}$£©-$\sqrt{3}$sin2x+sin£¨¦Ð+x£©cos£¨x+3¦Ð£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä¼°¶Ô³ÆÖá·½³Ì£»
£¨2£©ÈôBΪ¡÷ABCµÄÄڽǣ¬ÇÒÂú×ãf£¨$\frac{B}{2}$£©=$\sqrt{3}$£¬Çó¡ÏB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-lnx£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÇóÖ¤£ºx£¾1ʱ£¬$\frac{1}{2}$x2+lnx£¼$\frac{2}{3}$x3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏADC=90¡ã£¬BA=BC=AC=2£¬°Ñ¡÷BACÑØACÕÛÆðµ½¡÷PACµÄλÖã¬Ê¹µÃPµãÔÚÆ½ÃæADCÉϵÄÕýͶӰOÇ¡ºÃÂäÔÚÏß¶ÎACÉÏ£¬Èçͼ2Ëùʾ£®µãE£¬F·Ö±ðΪÀâPC£¬CDµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæOEF¡ÎÆ½ÃæAPD£»
£¨¢ò£©ÇóÖ¤£ºCD¡ÍÆ½ÃæPOF£»
£¨¢ó£©ÔÚÀâPCÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃMµ½µãP£¬O£¬C£¬FËĵã¾àÀëÏàµÈ£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸