17£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµãP£¨$\frac{3}{2}$£¬$\frac{\sqrt{7}}{4}$£©£¬Å×ÎïÏßEµÄ¶¥µã×ø±êÔ­µã£¬½¹µãF£¨0£¬b£©
£¨1£©ÇóÍÖÔ²C¼°Å×ÎïÏßEµÄ·½³Ì£®
£¨2£©µãQÔÚÍÖÔ²CÉÏ£¬¹ýµãQÏòÅ×ÎïÏßEÒýÁ½ÌõÇÐÏßl1£¬l2£®ÊÔÅжÏÊÇ·ñ´æÔÚÕâÑùµÄµãQ£¬Ê¹µÃl1¡Íl2£®Èô´æÔÚ£¬Çó³öµãQ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¼°µãPÂú×ã·½³Ì£¬½â·½³Ì¿ÉµÃa=2£¬b=1£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»ÔÙÓÉÅ×ÎïÏߵĽ¹µã£¨0£¬1£©£¬¿ÉµÃÅ×ÎïÏߵķ½³Ì£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚÕâÑùµÄµãQ£¬Ê¹µÃl1¡Íl2£®ÉèQ£¨m£¬n£©£¬¼°Å×ÎïÏßµÄÇÐÏß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃÅбðʽΪ0ºÍΤ´ï¶¨Àí£¬¼°QÔÚÍÖÔ²ÉÏ£¬µÃµ½m£¬nµÄ·½³Ì£¬¼´¿É½âµÃm£¬nµÄÖµ£¬¼´¿ÉÅжÏÊÇ·ñ´æÔÚ£®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµãP£¨$\frac{3}{2}$£¬$\frac{\sqrt{7}}{4}$£©£¬
¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬$\frac{9}{4{a}^{2}}$+$\frac{7}{16{b}^{2}}$=1£¬
½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
ÔòÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£¬
ÓÉÅ×ÎïÏߵĽ¹µãF£¨0£¬1£©£¬¿ÉµÃÅ×ÎïÏßEµÄ·½³ÌΪx2=4y£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚÕâÑùµÄµãQ£¬Ê¹µÃl1¡Íl2£®
ÉèQ£¨m£¬n£©£¬Ôòm2+4n2=4£¬¢Ù
Éè¹ýQµÄÇÐÏß·½³ÌΪy-n=k£¨x-m£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì£¬¿ÉµÃx2-4kx+4km-4n=0£¬
ÓÉÏàÇеÄÌõ¼þ¿ÉµÃ¡÷=16k2-16km+16n=0£¬
ÓÉl1¡Íl2£®¿ÉµÃk1k2=-1£¬
¼´Îªn=-1£¬´úÈëÉÏʽ¢Ù¿ÉµÃm=0£¬
ÔòÍÖÔ²ÉÏ´æÔÚÕâÑùµÄµãQ£¬ÇÒΪ£¨0£¬-1£©£¬Ê¹µÃl1¡Íl2£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÅ×ÎïÏßµÄλÖùØÏµ£ºÏàÇУ¬×¢ÒâÁªÁ¢·½³Ì£¬ÔËÓÃÅбðʽΪ0£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{8}$=1µÄÓÒ½¹µãF£¨1£¬0£©£¬¶¨µãA£¨2£¬1£©£¬PΪÍÖÔ²ÉÏÒ»¶¯µã£¬ÔòPA+3PFµÄ×îСֵΪ7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÉèF1£¬F2ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¸ö½¹µã£¬µãPÔÚË«ÇúÏßÉÏ£¬Èô$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0£¬ÇÒ|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2ac£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ$\frac{1+\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªf£¨x£©£¬g£¨x£©·Ö±ðÊǶ¨ÒåÔÚRÉϵÄżº¯ÊýºÍÆæº¯Êý£¬ÇÒf£¨x£©-g£¨x£©=x2+2x
£¨1£©Çóf£¨2£©+g£¨2£©µÄÖµ£»
£¨2£©Çóf£¨x£©+g£¨x£©µÄ½âÎöʽ£»
£¨3£©Çóf£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=x£¨x-m£©2+1£¨m¡ÊR£©ÔÚx=1´¦Óм«´óÖµ£®
£¨1£©ÇómµÄÖµ£»
£¨2£©Çóf£¨x£©ÔÚÇø¼ä[$\frac{1}{2}$£¬5]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÏÂÁеļ«ÏÞ£º
£¨1£©$\underset{lim}{n¡ú¡Þ}$$\frac{4{n}^{2}-5n-1}{7+2n-8{n}^{2}}$£»
£¨2£©$\underset{lim}{n¡ú¡Þ}$$\frac{1+2+3+¡­+£¨n-1£©}{{n}^{2}}$£»
£¨3£©$\underset{lim}{n¡ú¡Þ}$£¨$\frac{1}{1•2}$+$\frac{1}{2•3}$+¡­+$\frac{1}{n£¨n+1£©}$£©£»
£¨4£©$\underset{lim}{n¡ú¡Þ}$£¨$\sqrt{{n}^{2}+n}$-n£©£»
£¨5£©$\underset{lim}{n¡ú¡Þ}$£¨$\root{n}{2}$+$\root{n}{4}$+¡­+$\root{n}{18}$£©£»
£¨6£©$\underset{lim}{n¡ú¡Þ}$£¨1+$\frac{1}{n}$£©n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßC£ºy=4ax3+x£¬¹ýµãQ£¨0£¬-1£©×÷CµÄÇÐÏßl£¬ÇеãΪP£®
£¨1£©ÇóÖ¤£º²»ÂÛaÔõÑù±ä»¯£®µãP×Ü-ÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£»
£¨2£©Èôa£¾0£¬¹ýµãPÇÒÓë1´¹Ö±µÄÖ±ÏßÓëxÖá½»ÓÚµãT£¬ÇóOTµÄ×îСֵ£¨0Îª×ø±êÔ­µã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F·Ö±ðΪAB¡¢ADµÄÖе㣬ÔòEFÓëB1CËù³ÉµÄ½ÇµÈÓÚ£¨¡¡¡¡£©
A£®45¡ãB£®30¡ãC£®90¡ãD£®60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-lnx£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©ÇóÖ¤£ºx£¾1ʱ£¬$\frac{1}{2}$x2+lnx£¼$\frac{2}{3}$x3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸