精英家教网 > 高中数学 > 题目详情
14.正四棱锥的主视图和俯视图如图所示,其中主视图为边长为1的正三角形,则该正四棱锥的表面积为3.

分析 由正视图、俯视图以及正四棱锥的结构特征,求出正四棱锥的底面边长、侧面上的高,由面积公式求出该正四棱锥的表面积.

解答 解:根据三视图可知正四棱锥的底面是边长为1正方形,
侧面的高是正视图中的边长1,
∴该正四棱锥的表面积S=1×1+4×$\frac{1}{2}×1×1$=3,
故答案为:3.

点评 本题考查三视图求正四棱锥的表面积,以及正四棱锥的结构特征,由三视图正确求出几何元素是长度是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=2tan(2x+$\frac{π}{6}$)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-2)2+alnx.
(1)若a=-6,求f(x)的单调区间;
(2)若f(x)存在两个极值点x1,x2,且x1<x2,求证:$\frac{f({x}_{1})}{{x}_{2}}$≥2(1-e${\;}^{-\frac{1}{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要完成下列3项抽样调查:
①从15瓶饮料中抽取5瓶进行食品卫生检查.
②某校报告厅有25排,每排有38个座位,有一次报告会恰好坐满了学生,报告会结束后,为了听取意见,需要抽取25名学生进行座谈.
③某中学共有240名教职工,其中一般教师180名,行政人员24名,后勤人员36名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个几何体的三视图(单位:m)如图所示,则此几何体的表面积为12π+12m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a+b=1,证明函数f(x)的图象必过定点;
(2)记|f(x)|的最大值为M,对任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.平面a截半径为R的球O得到一个半径为$\frac{{\sqrt{3}R}}{2}$的截面圆O′,三棱锥S-ABC内接于球O,且△ABC是圆O′的内接正三角形,若O′S=R,则三棱锥S-ABC与球O的体积之比为$\frac{{9\sqrt{3}}}{256π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=3-3t\end{array}\right.$(t为参数),则直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足不等式$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}}\right.$,则z=2x-y的最大值为4.

查看答案和解析>>

同步练习册答案