精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足不等式$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}}\right.$,则z=2x-y的最大值为4.

分析 画出满足条件的平面区域,通过平移直线结合图象求出z的最大值即可.

解答 解:画出满足条件的平面区域,如图示:

由z=2x-y得:y=2x-z,
显然直线过(2,0)时,z最大,z的最大值是4,
故答案为:4.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.正四棱锥的主视图和俯视图如图所示,其中主视图为边长为1的正三角形,则该正四棱锥的表面积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设fn(x)=(3n-1)x2-x(n∈N*),An={x|fn(x)<0}
(1)定义An={x|x1<x<x2}的长度为x2-x1,求An的长度;
(2)把An的长度记作数列{an},令bn=an•an+1
1°求数列{bn}的前n项和Sn
2°是否存在正整数m,n(1<m<n),使得S1,Sm,Sn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|lgx>0},B={x|2<2x<8},则(  )
A.A=BB.A⊆BC.A?BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的前n项和为Sn,公比q=2,S10=1023,则S2+S4+S6+S8+S10的值为1359.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和Sn满足Sn=$\frac{{n}^{2}+n}{2}$(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an•3an(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ x+2y≥1\end{array}\right.$,则z=42x-y的最大值为(  )
A.$\root{3}{4}$B.2C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是(  )
A.16πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量$\overrightarrow{m}$=(cos A,cos C),$\overrightarrow{n}$=(c,a),$\overrightarrow{p}$=(2b,0),且$\overrightarrow{m}$•($\overrightarrow{n}$-$\overrightarrow{p}$)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若b=1,a=2,D是边BA上一点且∠B=∠DCA,求CD.

查看答案和解析>>

同步练习册答案