精英家教网 > 高中数学 > 题目详情
16.变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ x+2y≥1\end{array}\right.$,则z=42x-y的最大值为(  )
A.$\root{3}{4}$B.2C.4D.16

分析 画出满足条件的平面区域,作直线l:2x-y=t,通过平移l,求出t的最大值,从而求出z的最大值即可.

解答 解:如下图所示,作不等式组所表示的区域,
令2x-y=t,
作直线l:2x-y=t,
平移l,可知当x=1,y=0时,
${t_{max}}=2,{z_{max}}={4^2}=16$,
故选:D.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.平面a截半径为R的球O得到一个半径为$\frac{{\sqrt{3}R}}{2}$的截面圆O′,三棱锥S-ABC内接于球O,且△ABC是圆O′的内接正三角形,若O′S=R,则三棱锥S-ABC与球O的体积之比为$\frac{{9\sqrt{3}}}{256π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x=2是函数f(x)=x(x-m)2的极大值点,则m的值为(  )
A.3B.6C.2或6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足不等式$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}}\right.$,则z=2x-y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中正确命题的个数是(  )
(1)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p;
(2)在区间[0,π]上随机取一个数,则事件“tanxcosx≥$\frac{1}{2}$”发生的概率为$\frac{5}{6}$;
(3)两个随机变量的线性相关性越强,则相关系数r越接近1;
(4)f(x)=|sinx|+|cosx|,则f(x)的最小正周期是π.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三棱锥S-ABC中,△SAB和△ABC是边长为2$\sqrt{3}$的正三角形,二面角S-AB-C的平面角为60°,若S,A,B,C都在同一个球面上,则该球的表面积为(  )
A.$\frac{52π}{3}$B.$\frac{44π}{3}$C.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为了了解大学生观看某电视节目是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表,若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看该节目的有6人.
  喜欢看该节目 不喜欢看该节目 合计
 女生  5 
 男生 10  
 合计   50
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢看该节目与性别有关?说明你的理由;
(3)已知喜欢看该节目的10位男生中,A1、A2、A3、A4、A5还喜欢看新闻,B1、B2、B3还喜欢看动画片,C1、C2还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.0050. 001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,则复数$\frac{{1-\frac{1}{2}i}}{{1+\frac{1}{2}i}}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$-$\frac{3}{5}$iD.$\frac{4}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.⊙Ox2+y2=25的圆心O到直线3x+4y+5=0的距离等于(  )
A.1B.3C.5D.7

查看答案和解析>>

同步练习册答案