精英家教网 > 高中数学 > 题目详情
14.设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量$\overrightarrow{m}$=(cos A,cos C),$\overrightarrow{n}$=(c,a),$\overrightarrow{p}$=(2b,0),且$\overrightarrow{m}$•($\overrightarrow{n}$-$\overrightarrow{p}$)=0.
(Ⅰ)求角A的大小;
(Ⅱ)若b=1,a=2,D是边BA上一点且∠B=∠DCA,求CD.

分析 (Ⅰ)运用向量的数量积的坐标表示,结合正弦定理和两角和的正弦公式,即可求得A;
(Ⅱ)运用正弦定理求得sinB,由A>B,可得cosB,运用两角和的正弦公式可得sin∠ADC,再由正弦定理,计算即可得到所求值.

解答 解:(Ⅰ)由$\overrightarrow{m}$=(cos A,cos C),$\overrightarrow{n}$=(c,a),$\overrightarrow{p}$=(2b,0),
可得$\overrightarrow{m}$•($\overrightarrow{n}$-$\overrightarrow{p}$)=(cosA,cosC)•(c-2b,a)=(c-2b)cosA+acosC=0,
由正弦定理,可得(sinC-2sinB)cosA+sinAcosC=0,
即为2sinBcosA=sinCcosA+cosCsinA=sin(C+A)=sinB,
由sinB≠0,可得cosA=$\frac{1}{2}$,
由0<A<π,可得A=$\frac{π}{3}$;
(Ⅱ)由$\frac{a}{sinA}$=$\frac{b}{sinB}$,a=2,b=1,A=$\frac{π}{3}$,
可得sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}}{4}$,
由a>b,可得A>B,则cosB=$\sqrt{1-\frac{3}{16}}$=$\frac{\sqrt{13}}{4}$,
在△ACD中,sin∠ADC=sin(π-∠DCA-$\frac{π}{3}$)
=sin(∠DCA+$\frac{π}{3}$)=sin(B+$\frac{π}{3}$)=$\frac{1}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB
=$\frac{1}{2}$×$\frac{\sqrt{3}}{4}$+$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{13}}{4}$=$\frac{\sqrt{3}+\sqrt{39}}{8}$,
在△ACD中,由正弦定理,可得:
CD=$\frac{ACsin\frac{π}{3}}{sin∠ADC}$=$\frac{\sqrt{3}}{2}$×$\frac{8}{\sqrt{3}+\sqrt{39}}$=$\frac{\sqrt{13}-1}{3}$.

点评 本题考查向量数量积的坐标表示和三角函数的恒等变换,以及三角形的正弦定理的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足不等式$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}}\right.$,则z=2x-y的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,则复数$\frac{{1-\frac{1}{2}i}}{{1+\frac{1}{2}i}}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$-$\frac{3}{5}$iD.$\frac{4}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.语文成绩服从正态分布N(100,17.52),数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.
(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?
(2)如果语文和数学两科都特别优秀的共有6人,
从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有x人,求x的分布列和数学期望.(附公式及表)
若x~N(μ,σ2),则P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位长度,所得图象对应的函数(  )
A.在区间[-$\frac{π}{12}$,$\frac{5}{12}$π]上单调递增B.在区间[$\frac{π}{4},\frac{π}{4}$]上单调递增
C.在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减D.在区间[-$\frac{π}{12}$,$\frac{5}{12}$π]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.⊙Ox2+y2=25的圆心O到直线3x+4y+5=0的距离等于(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z1,z2在复平面内的对应点的分别为(1,-1),(-2,1),则$\frac{z_2}{z_1}$=(  )
A.$-\frac{3}{2}+\frac{1}{2}i$B.$-\frac{3}{2}-\frac{1}{2}i$C.$\frac{3}{2}+\frac{1}{2}i$D.$\frac{3}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知方程x2-2(m+2)x+m+2=0有两个不相等的实根,则m的取值范围是(  )
A.m<-2或m>-1B.-2<m<0C.-2<m<-1D.m>-1

查看答案和解析>>

同步练习册答案