精英家教网 > 高中数学 > 题目详情
8.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=f${\;}_{n}^{′}$(x),n∈N*,则f1(x)+f2(x)+…+f2015(x)=(  )
A.-sinx+cosxB.sinx-cosxC.-sinx-cosxD.sinx+cosx

分析 由已知分别求出f(x)的前几个导数,发现规律,得到所求.

解答 解:因为f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,
所以f2(x)=f1′(x)=cosx-sinx,
f3(x)=f2′(x)=-sinx-cosx,
f4(x)=f3′(x)=-cosx+sinx,
f5(x)=f4′(x)=sinx+cosx,…,
由此发现fn+1(x)是fn(x)的导函数,并且周期为4,每个周期的和为0,
所以f1(x)+f2(x)+…+f2015(x)=f1(x)+f2(x)+f,3(x)=cosx-sinx;
故选A.

点评 本题考查了三角函数的求导,考查学生的发现问题、发现问题、归纳总结的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设i是虚数单位,在复平面内,复数z=2i(1+i)所对应的点落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知命题p:任意x∈[2,3],使得x2-a≥0都成立,命题q:指数函数y=(log2a)x是R上的减函数,若命题“p且q”是真命题,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos(2x-$\frac{π}{3}$)-2sin2x+1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在[0,π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如表是某厂1~4月份用水量(单位:百吨)的一组数据:
月份x1234
用水量y4.5432.5
由散点图可知,用水量y与月份x之间有较好的线性相关关系,其回归直线方程是$\stackrel{∧}{y}$=-2x+$\stackrel{∧}{a}$,则$\stackrel{∧}{a}$等于8.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\left\{\begin{array}{l}x+2\;\;\;\;\;x<2\\ \frac{x^2}{2}\;\;\;\;\;\;\;x≥2\end{array}$
(1)求f[f(0)];
(2)若f(a)=3,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的射影为M,点N坐标为(3,3),则线段
MN长度的最小值是5-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=2sin(x-$\frac{π}{3}$)(0≤x≤π)的最大值与最小值之和为(  )
A.-2-$\sqrt{3}$B.-$\sqrt{3}$+2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.平面内给定三个向量$\overrightarrow a=(3,2),\overrightarrow b=(0,2),\overrightarrow c=(4,1)$
(1)求$|\overrightarrow a+\overrightarrow b|$
(2)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow a-\overrightarrow b)$,求实数k的值.

查看答案和解析>>

同步练习册答案