精英家教网 > 高中数学 > 题目详情
19.已知命题p:任意x∈[2,3],使得x2-a≥0都成立,命题q:指数函数y=(log2a)x是R上的减函数,若命题“p且q”是真命题,则实数a的取值范围是(1,2).

分析 求出命题p,q的等价条件,结合命题“p且q”是真命题,即可得到结论.

解答 解:命题p:任意x∈[2,3],使得x2-a≥0都成立,
则a≤x2,即a≤4,
命题q:指数函数y=(log2a)x是R上的减函数,
则0<log2a<1,解得1<a<2,
若命题“p且q”是真命题,
则$\left\{\begin{array}{l}{a≤4}\\{1<a<2}\end{array}\right.$,解得1<a<2,
故答案为:(1,2)

点评 本题主要考查复合命题的应用,根据条件求出命题p,q的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}-b}$(a、b为实数,且a>0)是奇函数.
(1)求a与b的值;
(2)解不等式f(log${\;}_{\frac{1}{3}}$x)+f(-1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z=(3m-2)+(m-1)i,m∈R,i为虚数单位.
(1)当m=2时,求复数z的模|z|;
(2)若z表示纯虚数,求m的值;
(3)在复平面内,若z对应的点位于第三象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线x2=$\frac{1}{4}$y的准线方程是(  )
A.y=1B.y=-1C.y=$\frac{1}{16}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.i是虚数单位,n是正整数,则in+in+1+in+2+in+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)化简:$\frac{{cos({α-\frac{π}{2}})}}{{sin({\frac{5π}{2}+α})}}$•sin(α-2π)•cos(π-α);
(2)计算:sin420°•cos750°+sin(-330°)•cos(-660°).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等轴双曲线$\frac{{x}^{2}}{3}-\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦距为$2\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=f${\;}_{n}^{′}$(x),n∈N*,则f1(x)+f2(x)+…+f2015(x)=(  )
A.-sinx+cosxB.sinx-cosxC.-sinx-cosxD.sinx+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=Asin(ωx+\frac{π}{6})(A>0,ω>0)$的图象与x轴的两个相邻交点的距离为$\frac{π}{2}$,且函数图象过点$(\frac{2π}{3},-2)$.
(1)求函数f(x)的解析式;
(2)当$x∈[{0,\frac{π}{2}}]$时,求函数f(x)的值域;
(3)将函数y=f(x)的图象向左平移φ(φ>0)个单位后得函数y=g(x)的图象,若g(x)为偶函数,求φ的最小值.

查看答案和解析>>

同步练习册答案