精英家教网 > 高中数学 > 题目详情
18.平面内给定三个向量$\overrightarrow a=(3,2),\overrightarrow b=(0,2),\overrightarrow c=(4,1)$
(1)求$|\overrightarrow a+\overrightarrow b|$
(2)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow a-\overrightarrow b)$,求实数k的值.

分析 (1)首先求出运算后的坐标,然后求模;
(2)用k表示两个向量的坐标,利用向量平行的性质解答.

解答 解:(1)∵$\overrightarrow a+\overrightarrow b=(3,4)∴{(\overrightarrow a+\overrightarrow b)^2}={3^2}+{4^2}=25∴|{\overrightarrow a+\overrightarrow b}|=5$…(6分)
(2)由$\overrightarrow a+k\overrightarrow c=(3+4k,2+k)$,2$\overrightarrow{a}-\overrightarrow{b}$=(6,2)
而$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow a-\overrightarrow b)$,
∴6+8k=12+6k,
∴k=3…(12分)

点评 本题考查了平面向量的坐标运算、向量平行的性质;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=f${\;}_{n}^{′}$(x),n∈N*,则f1(x)+f2(x)+…+f2015(x)=(  )
A.-sinx+cosxB.sinx-cosxC.-sinx-cosxD.sinx+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=Asin(ωx+\frac{π}{6})(A>0,ω>0)$的图象与x轴的两个相邻交点的距离为$\frac{π}{2}$,且函数图象过点$(\frac{2π}{3},-2)$.
(1)求函数f(x)的解析式;
(2)当$x∈[{0,\frac{π}{2}}]$时,求函数f(x)的值域;
(3)将函数y=f(x)的图象向左平移φ(φ>0)个单位后得函数y=g(x)的图象,若g(x)为偶函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)在R上存在导数f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|(x-1)2<3x+7,x∈R},B=$\left\{{x\left|{\frac{x}{x+1}≤0}\right.}\right\}$,则A∩B=(  )
A.[-1,0]B.(-1,0)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,BC=x,AC=2,B=45°,若三角形有两解,则x的取值范围是$(2,2\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在不考虑空气阻力的条件下,火箭的最大速度vm/s和燃料的质量Mkg、火箭(除燃料外)的质量mkg的函数关系是v=2000ln(1+$\frac{M}{m}}$).当燃料质量是火箭质量的e6-1倍时,火箭的最大速度可达 12000m/s.(要求填写准确值)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离大于1的概率为(  )
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$1-\frac{π}{8}$D.$1-\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知盒子中有5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出2个球,则其中至少有1个黑球的概率是$\frac{9}{14}$.

查看答案和解析>>

同步练习册答案