精英家教网 > 高中数学 > 题目详情
8.已知盒子中有5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出2个球,则其中至少有1个黑球的概率是$\frac{9}{14}$.

分析 利用对立事件的概率公式,可得至少有1个黑球的概率.

解答 解:由题意,利用对立事件的概率公式,可得至少有1个黑球的概率是1-$\frac{{C}_{5}^{2}}{{C}_{8}^{2}}$=$\frac{9}{14}$.
故答案为:$\frac{9}{14}$.

点评 此题主要考查了概率公式,考查对立事件的概率公式的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.平面内给定三个向量$\overrightarrow a=(3,2),\overrightarrow b=(0,2),\overrightarrow c=(4,1)$
(1)求$|\overrightarrow a+\overrightarrow b|$
(2)若$(\overrightarrow a+k\overrightarrow c)∥(2\overrightarrow a-\overrightarrow b)$,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于函数f(x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列结论:
①y=f(x)是以π为最小正周期的周期函数;
②y=f(x)可改写为y=4cos(2x-$\frac{π}{6}$);
③y=f(x)的最大值为4;
④y=f(x)的图象关于直线x=$\frac{π}{12}$对称;
则其中正确结论的序号为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-$\frac{1}{2}$,B=-$\frac{3}{2}$,C=1,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xoy取相同的单位长度,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于A,B两点,若点P坐标为(3,$\sqrt{5}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.变量x与变量y有如下对应关系
x23456
y2.23.85.56.57.0
则其线性回归直线必过定点(4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从极点O作一直线与直线l:ρcosθ=4交于点M,在OM上取一点P,使PO•OM=8.
(1)以O为坐标原点,极轴为x轴的正半轴,求P点轨迹的直角坐标方程;
(2)设N为l上的任意一点,试求PN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义两个实数间的一种新运算“*”:x*y=lg(10x+10y)(x,y∈R).对于任意实数a,b,c,给出如下结论:
①a*b=b*a;②(a*b)*c=a*(b*c)③(a*b)+c=(a+c)*(b+c);④(a*b)×c=(a×c)*(b×c).其中正确的结论是1,2,3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=x2+x+2,x∈(-5,5)的单调减区间为(  )
A.$(-∞,-\frac{1}{2})$B.$(-5,-\frac{1}{2})$C.$(-\frac{1}{2},5)$D.$(-\frac{1}{2},+∞)$

查看答案和解析>>

同步练习册答案