精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为为参数,),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)设曲线与曲线的交点分别为,求的最大值及此时直线的倾斜角.

【答案】12)最大值为8,此时直线的倾斜角为

【解析】

1)先将曲线的参数方程化为代数方程,再将此平面直角坐标系的代数方程化为极坐标方程;(2)将直线的参数方程代入曲线的代数方程,得出当取最大值时直线的参数.

1)因为曲线的参数方程为,所以曲线的普通方程为,即

所以曲线的极坐标方程为,即.

2)设直线上的点对应的参数分别为

将直线的参数方程代入曲线的普通方程,可得,即

所以.

所以当,即时,取得最大值,最大值为8,此时直线的倾斜角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把某校名学生的一次考试成绩(单位:)分成5组得到的频率分布直方图如图所示,其中落在内的频数为180.

1)请根据图中所给数据,求出本次考试成绩的中位数(保留一位小数)

2)从这5组中按分层抽样的方法选取40名学生的成绩作为一个样本,在内的样本中,再随机抽取两名学生的成绩,求所抽取两名学生成绩的平均分不低于70分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入冬天,大气流动性变差,容易形成雾握天气,从而影响空气质量.某城市环保部门试图探究车流量与空气质量的相关性,以确定是否对车辆实施限行.为此,环保部门采集到该城市过去一周内某时段车流量与空气质量指数的数据如下表:

时间

周一

周二

周三

周四

周五

周六

周日

车流量(x万辆)

10

9

9.5

10.5

11

8

8.5

空气质量指数y

78

76

77

79

80

73

75

(1)根据表中周一到周五的数据,求关于的线性回归方程;

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

附:回归方程中斜率和截距最小二乘估计公式分别为:

其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为元,当用水超过4吨时,超过部分每吨为元,每月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为.

1)求关于的函数关系式;

2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间的长度均为,已知不等式的解集为.

(1)求的长度;

(2)函数)的定义域与值域都是),求区间的最大长度;

(3)关于的不等式的解集为,若的长度为6,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc.已知cosC

(1),求△ABC的面积;

(2)设向量,且,求sin(BA)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①20202月通过考试进入国家数学奥赛集训队(集训队从201910月省数学竞赛一等奖中选拔);②20203月自主招生考试通过并且达到20206月高考重点分数线,③20206月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

1)求该学生参加自主招生考试的概率;

2)求该学生参加考试的次数的分布列及数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司(为企业服务)准备在两种员工付酬方式中选择一种现邀请甲、乙两人试行10天两种方案如下:甲无保底工资送出50件以内(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每送出一件再支付2元分别记录其10天的件数得到如图茎叶图,若将频率视作概率,回答以下问题:

1)记甲的日工资额为(单位:元),求的分布列和数学期望;

2)如果仅从日工资额的角度考虑请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,与直线相切,截直线所得的弦长为6.

1)求圆M的方程;

2)过点的两条成角的直线分别交圆MACBD,求四边形面积的最大值.

查看答案和解析>>

同步练习册答案