精英家教网 > 高中数学 > 题目详情
15.已知关于x的方程kx2+(2k-1)x+k+1=0,问k为何值时.
(1)方程两根均正;
(2)方程至少有一根在(3,4)内.

分析 由条件利用二次函数的性质,求得k的范围.

解答 解:(1)关于x的方程kx2+(2k-1)x+k+1=0,由$\left\{\begin{array}{l}{△{=(2k-1)}^{2}-4k(k+1)≥0}\\{{x}_{1}{+x}_{2}=\frac{1-2k}{k}>0}\\{{x}_{1}{•x}_{2}=\frac{k+1}{k}>0}\end{array}\right.$,求得 0<k≤$\frac{1}{8}$.
(2)若方程只有有一根在(3,4)内,令f(x)=kx2+(2k-1)x+k+1,
则f(3)f(4)=(16k-2)(25k-3)<0,求得$\frac{3}{25}$<k<$\frac{1}{8}$.
若方程有两个根在(3,4)内,则由$\left\{\begin{array}{l}{△{=(2k-1)}^{2}-4k(k+1)≥0}\\{3<\frac{1-2k}{2k}<4}\\{f(3)=16k-2>0}\\{f(4)=25k-3>0}\end{array}\right.$,求得k∈∅.
综上可得,k的范围是($\frac{3}{25}$,$\frac{1}{8}$).

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{m}$=(sinx,-sinx),$\overrightarrow{n}$=($\sqrt{3}$cosx,sinx),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(Ⅰ)求f(x)的最小正周期;    
(Ⅱ)当x∈(0,$\frac{2π}{3}$)时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=min$\{3-\frac{1}{2}{log_2}x,{log_2}x\}$,其中min(p,q}表示p,q两者中较小的一个,则满足f(x)<1的x的集合为(  )
A.(0,$\sqrt{2}$)B.(0,$\sqrt{2}$)∪(4,+∞)C.(0,2)D.(0,2)∪(16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数x、y满足$\left\{\begin{array}{l}{x≥0,y≥0}\\{2x-y+2≥0}\\{2x-y-3≤0}\\{x+y≤4}\end{array}\right.$,求z=3x+2y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x=log2aa,y=log3a2a,求证:21-xy=3y-xy

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=$\frac{ax+3}{x+b}$为奇函数.求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知下列各数列{an}的前n项和Sn的公式,求{an}的通项公式.
(1)Sn=10n-1;
(2)Sn=10n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线3x+4y-7=0的点方向式方程是$\frac{x-1}{4}$=$\frac{y-1}{-3}$;点法向式方程是3(x-1)+4(y-1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)4a${\;}^{\frac{3}{5}}$b${\;}^{\frac{2}{3}}$÷(-$\frac{2}{3}$a${\;}^{-\frac{2}{5}}$b${\;}^{-\frac{1}{3}}$);
(2)$\frac{\sqrt{m}•\root{3}{m}•\sqrt{m\sqrt{m}}}{(\root{6}{m})^{5}•{m}^{\frac{3}{4}}}$.

查看答案和解析>>

同步练习册答案