精英家教网 > 高中数学 > 题目详情
3.已知实数x、y满足$\left\{\begin{array}{l}{x≥0,y≥0}\\{2x-y+2≥0}\\{2x-y-3≤0}\\{x+y≤4}\end{array}\right.$,求z=3x+2y的最大值与最小值.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{2x-y+2≥0}\\{2x-y-3≤0}\\{x+y≤4}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x+y=4}\\{2x-y-3=0}\end{array}\right.$,解得B($\frac{7}{3},\frac{5}{3}$),
又O(0,0),
化目标函数z=3x+2y为$y=-\frac{3}{2}x+\frac{z}{2}$.
由图可知,当直线$y=-\frac{3}{2}x+\frac{z}{2}$过O时,直线在y轴上的截距最小,z有最小值为0;
当直线$y=-\frac{3}{2}x+\frac{z}{2}$过B时,直线在y轴上的截距最大,z有最大值为$3×\frac{7}{3}+2×\frac{5}{3}=\frac{31}{3}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设R为实数集,集合S={x|log2x>0},T={x|x2>4},则S∩(∁RT)=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+φ)(ω>0,π<φ<$\frac{3π}{2}$)的部分图象如图所示.
(1)求函数f(x)的表达式;   
(2)求函数f(x)在[$\frac{3π}{2}$,2π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设全集U是实数集R,M={x|x2>4},N={x|$\frac{2}{x-1}$≥1},则图中阴影部分所表示集合是{x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-a|.当a=-2时,解不等式f(x)≥16-|2x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若公比为q(q>0)的等比数列{an}的首项a1=1,且满足an=$\frac{{a}_{n-2}-{a}_{n-1}}{2}$(n=3,4,5…).公差为d的等差数列{bn}满足b1+b3=4,b2+b4=6.
(1)求q的值及数列{bn}的通项公式;
(2)设cn=anbn.求数列{cn}的前项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知关于x的方程kx2+(2k-1)x+k+1=0,问k为何值时.
(1)方程两根均正;
(2)方程至少有一根在(3,4)内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)的定义域为(0,+∞),值域为R,对任意正数x,y,都有f(xy)=f(x)+f(y),当x>1时f(x)<0且f(3)=-1.
(1)求f(1)、f(9)、f($\frac{1}{9}$)的值.
(2)若不等式f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于函数f(x)=sinx+cosx,下列命题是真命题的是(  )
A.?x∈R,f(x)=f(x+π)B..?x∈R,f(x)=$\frac{5}{3}$C..?x∈R,f(x)=-1D.?x∈R,f(x)<$\sqrt{2}$

查看答案和解析>>

同步练习册答案