精英家教网 > 高中数学 > 题目详情

【题目】已知过点,且与内切,设的圆心的轨迹为

1)求轨迹C的方程;

2)设直线不经过点且与曲线交于点两点,若直线与直线的斜率之积为,判断直线是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由.

【答案】1;(2过定点

【解析】

1)由题意结合圆的性质可得,利用椭圆的定义即可得解;

2)当直线斜率不存在时,求出各点坐标后即可得轴的交点为;当的斜率存在时,设l的方程为,联立方程可得,进而可转化条件,得出后即可得解.

1)由题意过点,且与内切,

易知点半径为

设两圆切点为

所以,在中,

所以,所以M的轨迹为椭圆,由椭圆定义可知

所以,所以轨迹C的方程为

2)①当的斜率不存在的时,设,所以

所以,解得(舍),

所以轴的交点为

②当的斜率存在时,设l的方程为

联立消元可得

,所以

由韦达定理

又因为,所以,即

所以,所以成立,

所以,当时,,所以l

综上所述,过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是直角梯形,,,侧面底面,是以为底的等腰三角形.

(Ⅰ)证明:

(Ⅱ)若四棱锥的体积等于.问:是否存在过点的平面分别交于点,使得平面平面?若存在,求出的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数浓度,制定了空气质量标准:

空气污染质量

空气质量等级

轻度污染

中度污染

重度污染

严重污染

某市政府为了打造美丽城市,节能减排,从2010年开始考查了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016111日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号为字母的,前13个视为单号,后13个视为双号).

1)某人计划11月份开车出行,求因空气污染被限号出行的概率;

2)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行三年来的11月份共90天的空气质量进行统计,其结果如表:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

16

39

18

10

5

2

根据限行前180天与限行后90天的数据,计算并填写列联表,并回答是否有的把握认为空气质量的优良与汽车尾气的排放有关.

空气质量优良

空气质量污染

合计

限行前

限行后

合计

参考数据:

其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求在点处的切线方程;

2)若函数上单调递增,求实数的取值范围;

3)证明:当时,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在的偶函数,且.时,,若方程300个不同的实数根,则实数m的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由团中央学校部、全国学联秘书处、中国青年报社共同举办的2018年度全国“最美中学生”寻访活动结果出炉啦,此项活动于20186月启动,面向全国中学在校学生,通过投票方式寻访一批在热爱祖国、勤奋学习、热心助人、见义勇为等方面表现突出、自觉树立和践行社会主义核心价值观的“最美中学生”.现随机抽取了30名学生的票数,绘成如图所示的茎叶图,若规定票数在65票以上(包括65票)定义为风华组.票数在65票以下(不包括65票)的学生定义为青春组.

1)如果用分层抽样的方法从青春组和风华组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在青春组的概率是多少?

2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取4人,用表示所选4人中青春组的人数,试写出的分布列,并求出的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的中a1=1a2=2,且满足.

1)求数列{an}的通项公式;

2)设bn,记数列{bn}的前n项和为Tn,若|Tn+1|,求n的最小值.

查看答案和解析>>

同步练习册答案