精英家教网 > 高中数学 > 题目详情
已知命题p:?m∈R,m+1≤0,命题q:?x∈R,x2+mx+1>0恒成立、若p∧q为假命题,则实数m的取值范围为( )
A.m≥2
B.m≤-2或m>-1
C.m≤-2或m≥2
D.-2≤m≤2
【答案】分析:由P∧q 为假命题可知,p为假,或者q为假,或者p和q同时为假,分类讨论三种情况后即可得出答案.
解答:解:由P∧q 为假命题可知,p为假,或者q为假,或者p和q同时为假,
因为命题p:?m∈R,m+1≤0,是真命题时,m≤-1,
当q为真时,由x2+mx+1>0恒成立,可得-2<m<2,
所以当p,q同时为真时有m≤-1且-2<m<2,即-2<m≤-1.
又p∧q为假命题,所以m>-1或m≤-2.
故选N.
点评:本题可能会有同学遗漏p与q同时为假的情况,在做题过程中要考虑全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知命题p:?m∈R,m+1≤0,命题q:?x∈R,x2+mx+1>0恒成立、若p∧q为假命题,则实数m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知命题p:?m∈R,3m≤0,则命题p的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:m∈R,且m+1≤0,命题q:?x∈R,x2+mx+1>0恒成立,若p∧q为假命题且p∨q为真命题,则m的取值范围是
m≤-2或-1<m<2
m≤-2或-1<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?m∈R,m+1≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,p∨q为真命题,则实数m的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?m∈R,m+1≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为
 

查看答案和解析>>

同步练习册答案