精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x
(1)当a>0时,讨论函数g(x)的单调性;
(2)设斜率为k的直线与函数f(x)的图象交于A(x1,y1),B(x2,y2)两点,其中x1<x2,证明$\frac{1}{{x}_{2}}<k<\frac{1}{{x}_{1}}$.

分析 (1)先求函数导数,再讨论参数范围确定导数符号即可.
(2)由条件得到不等关系,再进行整体换元转化为一元不等式的证明问题

解答 解:(1)g(x)=lnx+ax2-(2a+1)x,
g′(x)=$\frac{1}{x}$+2ax-(2a+1)=$\frac{2a(x-\frac{1}{2a})(x-1)}{x}$,(x>0),
∴①当$\frac{1}{2a}$<1,即a>$\frac{1}{2}$时,令g'(x)>0得,0<x<$\frac{1}{2a}$或x>1;
令g'(x)<0得,$\frac{1}{2a}$<x<1.
所以,增区间为(0,$\frac{1}{2a}$),(1,+∞);减区间为($\frac{1}{2a}$,1);
②当$\frac{1}{2a}$>1,即0<a<$\frac{1}{2}$时,令g'(x)>0得,0<x<1或x>$\frac{1}{2a}$;
令g'(x)<0得,$\frac{1}{2a}$<x<1.
所以,增区间为(0,1),($\frac{1}{2a}$,+∞);减区间为($\frac{1}{2a}$,1);
③当$\frac{1}{2a}$=1,即a=$\frac{1}{2}$时,g′(x)=$\frac{{(x-1)}^{2}}{x}$>0,增区间为(0,+∞).
综上,当0<a<$\frac{1}{2}$时,增区间为(0,1),($\frac{1}{2a}$,+∞);减区间为(1,$\frac{1}{2a}$);
当a=$\frac{1}{2}$时,增区间为(0,+∞);
当a>$\frac{1}{2}$时,增区间为(0,$\frac{1}{2a}$),(1,+∞);减区间为($\frac{1}{2a}$,1).
(2)证明:依题,k=$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{2}-x}_{1}}$,要证$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$,
只要证 $\frac{1}{{x}_{2}}$<$\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{2}-x}_{1}}$<$\frac{1}{{x}_{1}}$,
因为 x2-x1>0,故只要证$\frac{{x}_{2}{-x}_{1}}{{x}_{2}}$<ln $\frac{{x}_{2}}{{x}_{1}}$<$\frac{{x}_{2}{-x}_{1}}{{x}_{1}}$,
令$\frac{{x}_{2}}{{x}_{1}}$=t(t>1),则只需证  1-$\frac{1}{t}$<lnt<t-1(t>1),
令h(t)=lnt+$\frac{1}{t}$-1(t>1),则h′(t)=$\frac{1}{t}$-$\frac{1}{{t}^{2}}$=$\frac{t-1}{{t}^{2}}$>0,
∴h(t)在(1,+∞)上单调递增,
∴h(t)>h(1)=0,即lnt>1-$\frac{1}{t}$(t>1),
同理可证:lnt<t-1,
综上,1-$\frac{1}{t}$<lnt<t-1(t>1),即$\frac{1}{{x}_{2}}$<k<$\frac{1}{{x}_{1}}$.

点评 本题考查了导数的几何意义和导数在函数中的运用.考查了逻辑思维和运算能力以及转化的思想方法.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知命题p:若m>0,则关于 x的方程x2+x-m=0有实根,q是p的逆命题,下面结论正确的是(  )
A.p真q假B.p 假q真C.p真q真D.p 假q假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,B是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点,直线y=b与椭圆右准线交于点A,若以AB为直径的圆与x轴的公共点都在椭圆内部,则椭圆的离心率e的取值范围是($\frac{\sqrt{5}-1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体中ABCD-A1B1C1D1,E、F分别为AB,AA1的中点.求证:
(1)EF∥D1C;
(2)CE,D1F,DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间四边形OABC,如图所示,其对角线为OB、AC,M、N分别为OA、BC的中点,点G在线段MN上,且$\overrightarrow{MG}$=3$\overrightarrow{GN}$,现用基向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$表示向量$\overrightarrow{OG}$,并设$\overrightarrow{OG}$=x•$\overrightarrow{OA}$+y•$\overrightarrow{OB}$+z•$\overrightarrow{OC}$,则x、y、z的和为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},若a1,a2+1,a3成等差数列,数列{an+1}为公比为2的等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=an•log2(an+1)(n∈N*),其前n项和为Tn,试求满足Tn+$\frac{{n}^{2}+n}{2}$>2015的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x2+ex-$\frac{1}{2}$(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是(  )
A.(-$\sqrt{e}$,$\frac{1}{\sqrt{e}}$)B.(-$\frac{1}{\sqrt{e}}$,$\sqrt{e}$)C.(-∞,$\sqrt{e}$)D.(-∞,$\frac{1}{\sqrt{e}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{1}{3}$tan(-7x+$\frac{π}{3}$)的一个对称中心是(  )
A.($\frac{5π}{21}$,0)B.($\frac{π}{21}$,0)C.($\frac{π}{42}$,0)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系内,已知A(3,2)是圆C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x-y+1=0和x+y-7=0,若圆C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(-m,0),(m,0),则实数m的取值集合为[3,7].

查看答案和解析>>

同步练习册答案