精英家教网 > 高中数学 > 题目详情
称数列{an+1-an}为数列{an}的一阶差数列.若数列{an}中,a1=3,a4=24.且{an+1-an}的一阶差数列为常数列2,2,2,….
(1)求a2,a3
(2)求数列{an}的通项公式an
(3)设,求证:对一切n∈N+
【答案】分析:(1)确定数列{an+1-an}是公差为2的等差数列,即可求得结论;
(2)数列{an+1-an}是首项为5,公差为2的等差数列,由此可求数列{an}的通项公式an
(3)利用裂项法求和,即可证得结论.
解答:(1)解:由于数列{an+1-an}的一阶差数列为常数列2,2,2,…,知数列{an+1-an}是公差为2的等差数列.
由(a4-a3)-(a3-a2)=2,(a3-a2)-(a2-a1)=2得a2=8,a3=15.(4分)
(2)解:数列{an+1-an}是首项为5,公差为2的等差数列,
n≥2时
,(8分)
而a1=3也恰适合以上通项公式,故(9分)
(3)证明:对一切n∈N+
==(13分)
点评:本题考查新定义,考查等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列An的前m项为A1,A2,…,Am,若对任意正整数n,有A(n+m)=An•q(其中q为常数,q不等于0,1),则称数列An是以m为周期,以q为周期公比的似周期性等比数列.已知似周期性等比数列Bn的前7项为1,1,1,1,1,1,2,周期为7,周期公比为3,则数列Bn前7k+1项的和
 
.(k为正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:在数列{an}中,an>0,且an≠1,若anan+1为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2011等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和Sn=
n2
•a

(3)已知有穷等差数列{cn}的项数是n0(n0≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n0和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)对数列{an},若存在正常数M,使得对任意正整数n,都有|an|<M,则称数列{an}是有界数列.下列三个数列:an=
1
3
(1-2n)
an=
2n+3
2n-3
an=(
1
4
)n-(
1
2
)n
中,为有界数列的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),an+1=
an-1,an>1,
1
an
,0<an≤1
则下列结论中错误的是(  )

查看答案和解析>>

同步练习册答案