精英家教网 > 高中数学 > 题目详情
(2013•海淀区二模)若数列{an}满足:存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1=m(m>0),an+1=
an-1,an>1,
1
an
,0<an≤1
则下列结论中错误的是(  )
分析:由给出的递推式,把选项A、B、C中的m及a3分别代入递推式验证,可以判断选项A、B、C正确,由排除法可以断定不正确的选项是D.
解答:解:由an+1=
an-1,an>1
1
an
,0<an≤1
,且a1=m=
4
5
<1,
所以,a2=
1
a1
=
1
4
5
=
5
4
>1
a3=a2-1=
5
4
-1=
1
4
<1,
a4=
1
a3
=
1
1
4
=4
>1,a5=a4-1=4-1=3.
故选项A正确;
由a3=2,若a3=a2-1=2,则a2=3,若a1-1=3,则a1=4.
1
a1
=3
,则a1=
1
3

由a3=2,若a3=
1
a2
=2
,则a2=
1
2
,若a1-1=
1
2
,则a1=
3
2

1
a1
=
1
2
,则a1=2,不合题意.
所以,a3=2时,m即a1的不同取值由3个.
故选项B正确;
a1=m=
2
>1,则a2=a1-1=
2
-1<1

a3=
1
a2
=
1
2
-1
=
2
+1>1

所以a4=a3-1=
2
+1-1=
2

故在m=
2
时,数列{an}是周期为3的周期数列,选项C正确;
选项A、B、C均正确,不正确的选项即可排除A、B、C,由选择题的特点可知,不正确的选项是D.
故选D.
点评:本题考查了简单的合情推理,考查了分类讨论的数学思想,训练了学生的计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知函数f(x)=ex,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).
(Ⅰ)当a=0时,求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

同步练习册答案