精英家教网 > 高中数学 > 题目详情
6.已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同,直线l的极坐标方程为:ρ=$\frac{5}{sin(θ-\frac{π}{3})}$,点P(2cosα,2sinα+2),参数α∈R.
(Ⅰ)求点P轨迹的直角坐标方程;
(Ⅱ)求点P到直线l距离的最大值.

分析 (Ⅰ)设点P(x,y),由点P(2cosα,2sinα+2),参数α∈R,能求出点P的轨迹的直角坐标方程.
(Ⅱ)求出直线l的直角坐标方程为$\sqrt{3}x-y+10=0$,由P的轨迹是圆心为(0,2),半径为2的圆,求出圆心到直线的距离,从而能求出点P到直线的距离的最大值.

解答 解:(Ⅰ)设点P(x,y),
∵点P(2cosα,2sinα+2),参数α∈R,
∴$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$,且参数a∈R,
∴点P的轨迹的直角坐标方程为x2+(y-2)2=4.
(Ⅱ)∵直线l的极坐标方程为:ρ=$\frac{5}{sin(θ-\frac{π}{3})}$,∴$ρsin(θ-\frac{π}{3})=5$,
∴$\frac{1}{2}ρsinθ-\frac{\sqrt{3}}{2}ρcosθ=5$,
∴$ρsinθ-\sqrt{3}ρcosθ=10$,
∴直线l的直角坐标方程为$\sqrt{3}x-y+10=0$,
由(1)知点P的轨迹是圆心为(0,2),半径为2的圆,
∴圆心到直线的距离d=$\frac{|-2+10|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=4,
∴点P到直线的距离的最大值为4+2=6.

点评 本题考查点的轨迹的直角坐标方程的求法,考查点到直线的距离的最大值的求法,是中档题,解题时要认真审题,注意点到直线距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.$\lim_{n→∞}\frac{{{n^2}+1}}{{2{n^2}-n+2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m),若向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为3,则实数m=(  )
A.3B.-3C.$\sqrt{3}$D.-3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点所在直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,设a,b,c分别为角A,B,C的对边,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,则边c=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若等差数列{an}满足a1=2,a5=6,则a2015=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2}{1-i}$-2对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(理科做)如图,正四棱锥P-ABCD中,PA=BD,点M为AC,BD的交点,点N为AP中点.
(1)求证:MN∥平面PBC;
(2)求MN与平面PAD所成角的正弦值;
(3)求平面PBC与平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(普通班)设动点P(x,y)到定点F($\frac{1}{2}$,0)的距离比到y轴的距离大$\frac{1}{2}$.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)过F($\frac{1}{2}$,0)作直线m交曲线C(x≥0)于A、B两点,若以AB为直径的圆过点D(0,$\frac{1}{2}$),求三角形ABD的面积.

查看答案和解析>>

同步练习册答案