分析 (1)由$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$消去θ,得C1的直角坐标方程,再将x=ρcosφ,y=ρsinφ代入能求出C1的极坐标方程.
(2)先求出C2的直角坐标方程,和C1的直角坐标方程联立,求出C1、C2的交点所在直线方程,由此能求出其极坐标方程.
解答 (1)解:∵曲线C1的参数方程为$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$(θ为参数),
∴由$\left\{\begin{array}{l}x=3+4coxθ\\ y=4+4sinθ\end{array}\right.$消去θ,得C1的直角坐标方程:(x-3)2+(y-4)2=16,(2分)
即x2+y2-6x-8y+9=0
将x=ρcosφ,y=ρsinφ代入得C1的极坐标方程为ρ2-6ρcosφ-8ρsinφ+9=0.(4分)
(2)解:∵曲线C2的极坐标方程为ρ=4sinθ,
由ρ=4sinθ,得C2的普通方程为:x2+y2-4y=0,(6分)
由$\left\{\begin{array}{l}{x^2}+{y^2}-6x-8y+9=0\\{x^2}+{y^2}-4y=0\end{array}\right.$,得:6x+4y-9=0,(8分)
∴C1、C2的交点所在直线方程为6x+4y-9=0
∴其极坐标方程为:6ρcosθ+4ρsinθ-9=0.(10分)
点评 本题考查极坐标方程的求法,是基础题,解题时要认真审题,注意直角坐标、极坐标互化公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 三棱台 | B. | 三棱柱 | C. | 四棱柱 | D. | 四棱锥 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{5}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com