如图,等边三角形OAB的边长为8
,且其三个顶点均在抛物线E:x2=2py(p>0)上.![]()
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
(1) x2=4y (2)见解析
解析(1)解:依题意,|OB|=8
,∠BOy=30°.
设B(x,y),则x="|OB|sin" 30°=4
,
y="|OB|cos" 30°=12.
因为点B(4
,12)在x2=2py上,
所以(4
)2=2p×12,解得p=2.
故抛物线E的方程为x2=4y.
(2)证明:由(1)知y=
x2,y′=
x.
设P(x0,y0),则x0≠0,y0=
,且l的方程为
y-y0=
x0(x-x0),即y=
x0x-
.
由
得![]()
所以Q为
.
设M(0,y1),令
·
=0对满足y0=
(x0≠0)的x0,y0恒成立.
由于
=(x0,y0-y1),
=
,
由
·
=0,
得
-y0-y0y1+y1+
=0,
即(
+y1-2)+(1-y1)y0=0.(*)
由于(*)式对满足y0=
(x0≠0)的y0恒成立,
所以![]()
解得y1=1.
故以PQ为直径的圆恒过y轴上的定点M(0,1).
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=
.![]()
(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
+
=1(a>b>0)的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若
·
+
·
=8,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
,M,N是直线x=4上的两个动点,且
·
=0.![]()
(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(
>
>0)的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线
与椭圆相交于不同的两点
,已知点
的坐标为(
,0),点
(0,
)在线段
的垂直平分线上,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设动点P(x,y)(x≥0)到定点F
的距离比到y轴的距离大
.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F
作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C:
=1(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明
+
为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:![]()
的离心率
,原点到过点
,
的直线的距离是
.
(1)求椭圆
的方程;
(2)若椭圆
上一动点![]()
关于直线
的对称点为
,求
的取值范围;
(3)如果直线
交椭圆
于不同的两点
,
,且
,
都在以
为圆心的圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录如下:
、
、
、
.
(1)经判断点
,
在抛物线
上,试求出
的标准方程;
(2)求抛物线
的焦点
的坐标并求出椭圆
的离心率;
(3)过
的焦点
直线与椭圆
交不同两点
且满足
,试求出直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com