如图,椭圆
过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
,M,N是直线x=4上的两个动点,且
·
=0.![]()
(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
(1)
=1;(2)
;(3)(4-
,0)和(4+
,0) .
解析试题分析:(1)因为:
,且过点P(1,
),列出关于a,b的方程,解得a,b.最后写出椭圆方程即可;(2)设点M(4,m),N(4,n)写出向量的坐标,利用向量的数量积得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+
≥
,结合基本不等式即可求得MN的最小值;
(3)利用圆心C的坐标和半径得出圆C的方程,再令y=0,得x2-8x+1=0从而得出圆C过定点.
试题解析:(1)由已知可得![]()
![]()
![]()
∴椭圆的方程为
=1 4分
(2)设M(4,m),N(4,n),∵F1(-1,0),F2(1,0)
=(5,m),
=(3,n),由
=0
mn=-15<0 6分
∴|MN|=|m-n|=|m|+|n|=|m|+
≥2
∴|MN|的最小值为2
10分
(3)以MN为直径的圆C的方程为:(x-4)2+(y-
)=(
)2 11分
令y=0得(x-4)2=
-
=-mn=15
x=4±![]()
所以圆C过定点(4-
,0)和(4+
,0) 13分
考点:1.圆与圆锥曲线的综合;2.椭圆的简单性质.
科目:高中数学 来源: 题型:解答题
如图,椭圆
经过点
,离心率
,直线
的方程为
.![]()
(1)求椭圆
的方程;
(2)
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知左焦点为F(-1,0)的椭圆过点E(1,
).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点O,且恰好与直线
相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN![]()
轴于N,若动点Q满足
(其中m为非零常数),试求动点
的轨迹方程
.
(3)在(2)的结论下,当
时,得到动点Q的轨迹曲线C,与
垂直的直线
与曲线C交于 B、D两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,
分别是椭圆
:
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
,
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆
的方程;
(2)已知点
,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求
的取值范围;
(3)作直线
与椭圆
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,等边三角形OAB的边长为8
,且其三个顶点均在抛物线E:x2=2py(p>0)上.![]()
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的两个焦点分别为F1,F2,离心率为
,且过点(2,
).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com