如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0.
(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
(1)=1;(2);(3)(4-,0)和(4+,0) .
解析试题分析:(1)因为:,且过点P(1, ),列出关于a,b的方程,解得a,b.最后写出椭圆方程即可;(2)设点M(4,m),N(4,n)写出向量的坐标,利用向量的数量积得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+≥,结合基本不等式即可求得MN的最小值;
(3)利用圆心C的坐标和半径得出圆C的方程,再令y=0,得x2-8x+1=0从而得出圆C过定点.
试题解析:(1)由已知可得
∴椭圆的方程为=1 4分
(2)设M(4,m),N(4,n),∵F1(-1,0),F2(1,0)
=(5,m),=(3,n),由=0mn=-15<0 6分
∴|MN|=|m-n|=|m|+|n|=|m|+≥2 ∴|MN|的最小值为2 10分
(3)以MN为直径的圆C的方程为:(x-4)2+(y-)=()2 11分
令y=0得(x-4)2=-=-mn=15x=4±
所以圆C过定点(4-,0)和(4+,0) 13分
考点:1.圆与圆锥曲线的综合;2.椭圆的简单性质.
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点,离心率,直线的方程为.
(1)求椭圆的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,分别是椭圆:的左、右焦点,过作倾斜角为的直线交椭圆于,两点, 到直线的距离为,连接椭圆的四个顶点得到的菱形面积为.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过、两点的直线交轴于点,若, 求的取值范围;
(3)作直线与椭圆交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).
(1)求椭圆C的标准方程;
(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com