已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
科目:高中数学 来源: 题型:解答题
如图,已知抛物线C1:x2+by=b2经过椭圆C2:
+
=1(a>b>0)的两个焦点.![]()
(1)求椭圆C2的离心率;
(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
过点P(1,
),其左、右焦点分别为F1,F2,离心率e=
,M,N是直线x=4上的两个动点,且
·
=0.![]()
(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设动点P(x,y)(x≥0)到定点F
的距离比到y轴的距离大
.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P的轨迹上,BD是圆M在y轴上截得的弦,当M运动时弦长BD是否为定值?说明理由;
(3)过F
作互相垂直的两直线交曲线C于G、H、R、S,求四边形GRHS面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C:
=1(a>b>0)的左、右焦点分别是F1、F2,离心率为
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明
+
为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2
=
.
(1)求动点M的轨迹E的方程.
(2)若曲线E的所有弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:![]()
的离心率
,原点到过点
,
的直线的距离是
.
(1)求椭圆
的方程;
(2)若椭圆
上一动点![]()
关于直线
的对称点为
,求
的取值范围;
(3)如果直线
交椭圆
于不同的两点
,
,且
,
都在以
为圆心的圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,且离心率
.![]()
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交于
,
两点(
不是左右顶点),椭圆的右顶点为
,且满足
,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com